Contact us: +91 9550333722 040 - 40102781
Structured search
India
Choose your country
Different countries will display different contents
Try our best to find the right business for you.
My chemicalbook

Welcome back!

HomeProduct name listAdipic acid

Adipic acid

Synonym(s):Adipic acid;ADI-PURE high purity adipic acid;ADI-PURE LGA adipic acid;Hexanedioic acid

  • CAS NO.:124-04-9
  • Empirical Formula: C6H10O4
  • Molecular Weight: 146.14
  • MDL number: MFCD00004420
  • EINECS: 204-673-3
  • SAFETY DATA SHEET (SDS)
  • Update Date: 2024-11-19 23:02:33
Adipic acid Structural

What is Adipic acid?

Chemical properties

Adipic acid (butane-1,4-dicarboxylic acid, C6H10O4) is a white crystalline powder of C6-straight chain dicarboxylic acid, insoluble in water, soluble in alcohol and acetone. It has low hygroscopicity, long-lasting acidity and high acidity, which complements grape-flavoured products and products with delicate flavours. The acid has a slightly stronger sour flavour than citric acid at all pH values. Aqueous solutions of this acid are the least acidic of all food acidifiers and have a high buffering capacity in the pH range of 2.5-3.0.

Description

Adipic acid is a crystalline powder with practically no odor. It has the lowest acidity of any of the acids commonly used in foods and has excellent buffering capacity in the range of pH 2.5 to 3.0. Like succinic and fumaric acid, adipic acid is practically nonhygroscopic. Its addition to foods imparts a smooth, tart taste. In grape-flavored products, it adds a lingering supplementary flavor and gives an excellent set to food powders containing gelatin. As a result, adipic acid has found a wide number of uses as an accidulant in dry powdered food mixtures, especially in those products having delicate flavors and where addition of tang to the flavor is undesirable.
Adipic acid
Its aqueous solutions have the lowest acidity of any of the common food acids. For concentrations from 0.5 to 2.4 g/100 mL, the pH of its solution varies less than half a unit. Hence, it can be used as a buffering agent to maintain acidities within the range of 2.5 to 3.0. This is highly desirable in certain foods, yet the pH is low enough to inhibit the browning of most fruits and other foodstuffs.

Description

Adipic acid, or more formally hexanedioic acid, is a white crystalline solid that melts at 152 oC. It is one of the most important monomers in the polymer industry.
Adipic acid is found in beet juice, but the article of commerce—≈2.5 million tonnes of it per year—is manufactured. In 1906, French chemists L. Bouveault and R. Locquin reported that adipic acid can be produced by oxidizing cyclohexanol. Today, the most common manufacturing process is the nitric acid (HNO3) oxidation of a cyclohexanol–cyclohexanone mixture called KA (for ketone–alcohol) oil.
Almost all adipic acid is used as a comonomer with hexamethylenediamine to produce nylon 6-6. It is also used to manufacture other polymers such as polyurethanes.
Using HNO3?to produce adipic acid has its downside: Copious amounts of nitrous oxide (N2O), a greenhouse gas, are coproduced and released into the atmosphere. In late 2014, K. C. Hwang and A. Sagadevan of National Tsing Hua University (Hsinchu City, Taiwan, Province of China) reported?a process that uses ozone and ultraviolet (UV) light to oxidize KA oil to adipic acid. This method eliminates the production of N2O; but before the process can be used commercially, problems associated with the formation of organic peroxides from ozone and the difficulty of using UV light on a large scale must be overcome.

Chemical properties

Adipic acid is the organic compound with the formula (CH2)4(COOH)2. From the industrial perspective, it is the most important dicarboxylic acid: About 2.5 billion kilograms of this white crystalline powder are produced annually, mainly as a precursor for the production of nylon. Adipic acid otherwise rarely occurs in nature.

Physical properties

Adipic acid is a straight-chain dicarboxylic acid that exists as a white crystalline compound at standard temperature and pressure. Adipic acid is one of the most important industrial chemicals and typically ranks in the top 10 in terms of volume used annually by the chemical industry.

Occurrence

Reported found as a minor constituent in butter, and has been found in other fats as a product of oxidative rancidity. It also occurs in beet juice, pork fat, guava fruit (Psidium guajava L.), papaya (Carica papaya L.) and raspberry (Rubus idaeus L.).

The Uses of Adipic acid

Adipic Acid is primarily used in the synthesis of nylon. It has been used as a reagent in the solid-state polymerization of nylon analogs.

The Uses of Adipic acid

Adipic Acid is an acidulant and flavoring agent. it is characterized as stable, nonhygroscopic, and slightly soluble, with a water solubility of 1.9 g/100 ml at 20°c. it has a ph of 2.86 at 0.6% usage level at 25°c. it is used in powdered drinks, beverages, gelatin desserts, loz- enges, and canned vegetables. it is also used as a leavening acidulant in baking powder. it can be used as a buffering agent to maintain acidities within a range of ph 2.5–3.0. it is occasionally used in edi- ble oils to prevent rancidity.

The Uses of Adipic acid

Adipic acid’s main use is in the production of 6,6 nylon. It is also used in resins, plasticizers, lubricants, polyurethanes, and food additives.

What are the applications of Application

Adipic acid is a dicarboxylic acid that is a useful synthetic reagent. Adipic acid is mainly used in the food industry as an acidifier, buffer, gelling aid, antimicrobial, antioxidant and chelating agent. Adipic acid is also used in the manufacture of plasticisers for polyurethane systems, as a lubricant component and in polyester polyols.

Definition

ChEBI: An alpha,omega-dicarboxylic acid that is the 1,4-dicarboxy derivative of butane.

Production Methods

Adipic acid is prepared by nitric acid oxidation of cyclohexanol or cyclohexanone or a mixture of the two compounds. Recently, oxidation of cyclohexene with 30% aqueous hydrogen peroxide under organic solvent- and halide-free conditions has been proposed as an environmentally friendly alternative for obtaining colorless crystalline adipic acid.

Production Methods

Adipic acid can be manufactured using several methods, but the traditional and main route of preparation is by the two-step oxidation of cyclohexane (C6H12). In the first step, cyclohexane is oxidized to cyclohexanone and cyclohexanol with oxygen or air. This occurs at a temperature of approximately 150°C in the presence of cobalt or manganese catalysts. The second oxidation is done with nitric acid and air using copper or vanadium catalysts. In this step, the ring structure is opened and adipic acid and nitrous oxide are formed. Other feedstocks such as benzene and phenol may be use to synthesize adipic acid. Adipic acid production used to be a large emitter of nitrous oxide, a greenhouse gas, but these have been controlled in recent years using pollution abatement technology.

Preparation

Adipic acid is produced from a mixture of cyclohexanol and cyclohexanone called "KA oil", the abbreviation of "ketone-alcohol oil." The KA oil is oxidized with nitric acid to give adipic acid, via a multistep pathway. Early in the reaction the cyclohexanol is converted to the ketone, releasing nitrous acid:
HOC6H11 + HNO3 → OC6H10 + HNO2 + H2O
Among its many reactions, the cyclohexanone is nitrosated, setting the stage for the scission of the C- C bond:
HNO2 + HNO3 → NO+NO3- + H2O
OC6H10 + NO+→ OC6H9-2 - NO + H+
Side products of the method include glutaric and succinic acids.
Related processes start from cyclohexanol, which is obtained from the hydrogenation of phenol.

Reactions

Adipic acid is a dibasic acid (can be deprotonated twice). Its pKa's are 4.41 and 5.41.
With the carboxylate groups separated by four methylene groups, adipic acid is suited for intramolecular condensation reactions. Upon treatment with barium hydroxide at elevated temperatures, it undergoes ketonization to give cyclopentanone.

Preparation

Adipic acid can be obtained by the production of cyclohexane. Cyclohexanol or cyclohexanone can also be oxidised to adipic acid by strains of bacteria such as Acinetobacter, Pseudomonas, and Xanthobacter.

Biotechnological Production

Adipic acid is industrially produced by chemical synthesis. However, there are new efforts to develop an adipic acid production process using biorenewable sources. A direct biosynthesis route has not yet been reported. The possible precursors Z,Z-muconic acid and glucaric acid can be produced biotechnologically by fermentation. Z,Z-muconic acid can be made from benzoate with concentrations up to 130 mM with a yield of close to 100 % (mol/mol) by Pseudomonas putida KT2440-JD1 grown on glucose. Alternatively, it can be produced by engineered E. coli directly from glucose at up to 260 mM with a yield of 0.2 mol Z,Zmuconic acid per mole glucose .
The production of the second possible precursor, glucaric acid, by engineered E. coli growing on glucose has been reported. However, the product titers were low (e.g. 4.8 and 12 mM. To overcome the problem of low product concentrations, an alternative synthetic pathway has been suggested but not yet demonstrated .
In a hydrogenation process, Z,Z-muconic acid and glucaric acid could be converted chemically into adipic acid. Therefore, bimetallic nanoparticles or platinum on activated carbon as catalysts have been studied . In particular, nanoparticles of Ru10Pt2 anchored within pores of mesoporous silica showed high selectivity and conversion rates, greater than 0.90 mol adipic acid per mole Z,Zmuconicacid. With platinum on activated carbon, conversion rates of 0.97 mol.mol-1 of Z,Z-muconic acid into adipic acid have been shown. Another possibility would be the production of adipic acid from glucose via the a–aminoadipate pathway ]. Finally, the production of adipic acid from longchain carbon substrates has been suggested. The conversion of fatty acids into dicarboxylic acids by engineered yeast strains has been reported.

General Description

Adipic acid is a white crystalline solid. Adipic acid is insoluble in water. The primary hazard is the threat to the environment. Immediate steps should be taken to limit its spread to the environment. Adipic acid is used to make plastics and foams and for other uses.

Air & Water Reactions

Dust may form explosive mixture with air [USCG, 1999]. Insoluble in water.

Reactivity Profile

Adipic acid is a carboxylic acid. Carboxylic acids donate hydrogen ions if a base is present to accept them. They react in this way with all bases, both organic (for example, the amines) and inorganic. Their reactions with bases, called "neutralizations", are accompanied by the evolution of substantial amounts of heat. Neutralization between an acid and a base produces water plus a salt. Carboxylic acids with six or fewer carbon atoms are freely or moderately soluble in water; those with more than six carbons are slightly soluble in water. Soluble carboxylic acid dissociate to an extent in water to yield hydrogen ions. The pH of solutions of carboxylic acids is therefore less than 7.0. Many insoluble carboxylic acids react rapidly with aqueous solutions containing a chemical base and dissolve as the neutralization generates a soluble salt. Carboxylic acids in aqueous solution and liquid or molten carboxylic acids can react with active metals to form gaseous hydrogen and a metal salt. Such reactions occur in principle for solid carboxylic acids as well, but are slow if the solid acid remains dry. Even "insoluble" carboxylic acids may absorb enough water from the air and dissolve sufficiently in Adipic acid to corrode or dissolve iron, steel, and aluminum parts and containers. Carboxylic acids, like other acids, react with cyanide salts to generate gaseous hydrogen cyanide. The reaction is slower for dry, solid carboxylic acids. Insoluble carboxylic acids react with solutions of cyanides to cause the release of gaseous hydrogen cyanide. Flammable and/or toxic gases and heat are generated by the reaction of carboxylic acids with diazo compounds, dithiocarbamates, isocyanates, mercaptans, nitrides, and sulfides. Carboxylic acids, especially in aqueous solution, also react with sulfites, nitrites, thiosulfates (to give H2S and SO3), dithionites (SO2), to generate flammable and/or toxic gases and heat. Their reaction with carbonates and bicarbonates generates a harmless gas (carbon dioxide) but still heat. Like other organic compounds, carboxylic acids can be oxidized by strong oxidizing agents and reduced by strong reducing agents. These reactions generate heat. A wide variety of products is possible. Like other acids, carboxylic acids may initiate polymerization reactions; like other acids, they often catalyze (increase the rate of) chemical reactions. Behavior in Fire: Melts and may decompose to give volatile acidic vapors of valeric acid and other substances.

Health Hazard

Exposures to adipic acid cause pain, redness of the skin and eyes, tearing or lacrimation. Adipic acid has been reported as a non-toxic chemical. Excessive concentrations of adipic acid dust are known to cause moderate eye irritation, irritation to the skin, and dermatitis.It may be harmful if swallowed or inhaled. It causes respiratory tract irritation with symptoms of coughing, sneezing, and blood-tinged mucous.

Flammability and Explosibility

Non flammable

Pharmaceutical Applications

Adipic acid is used as an acidifying and buffering agent in intramuscular, intravenous and vaginal formulations. It is also used in food products as a leavening, pH-controlling, or flavoring agent.
Adipic acid has been incorporated into controlled-release formulation matrix tablets to obtain pH-independent release for both weakly basicand weakly acidic drugs.It has also been incorporated into the polymeric coating of hydrophilic monolithic systems to modulate the intragel pH, resulting in zero-order release of a hydrophilic drug.The disintegration at intestinal pH of the enteric polymer shellac has been reported to improve when adipic acid was used as a pore-forming agent without affecting release in the acidic media.Other controlled-release formulations have included adipic acid with the intention of obtaining a late-burst release profile.

Safety Profile

Poison by intraperitoneal route. Moderately toxic by other routes. A severe eye irritant. Combustible when exposed to heat or flame; can react with oxidzing materials. When heated to decomposition it emits acrid smoke and fumes.

Safety

Adipic acid is used in pharmaceutical formulations and food products. The pure form of adipic acid is toxic by the IP route, and moderately toxic by other routes. It is a severe eye irritant, and may cause occupational asthma.
LD50 (mouse, IP): 0.28 g/kg
LD50 (mouse, IV): 0.68 g/kg
LD50 (mouse, oral): 1.9 g/kg
LD50 (rat, IP): 0.28 g/kg
LD50 (rat, oral): >11 g/kg

Synthesis

By oxidation of cyclohexanol with concentrated nitric acid; by catalytic oxidation of cyclohexanone with air.

Potential Exposure

Workers in manufacture of nylon, plasticizers, urethanes, adhesives, and food additives

storage

Adipic acid is normally stable but decomposes above boiling point. It should be stored in a tightly closed container in a cool, dry place, and should be kept away from heat, sparks, and open flame.

Shipping

UN3077 Environmentally hazardous substances, solid, n.o.s., Hazard class: 9; Labels: 9-Miscellaneous hazardous material, Technical Name Required

Purification Methods

For use as a volumetric standard, adipic acid is crystallised once from hot water with the addition of a little animal charcoal, dried at 120o for 2hours, then recrystallised from acetone and again dried at 120o for 2hours. Other purification procedures include crystallisation from ethyl acetate and from acetone/petroleum ether, fusion followed by filtration and crystallisation from the melt, and preliminary distillation under vacuum. [Beilstein 2 IV 1956.]

Incompatibilities

Adipic acid is incompatible with strong oxidizing agents as well as strong bases and reducing agents. Contact with alcohols, glycols, aldehydes, epoxides, or other polymerizing compounds can result in violent reactions.

Waste Disposal

Dissolve or mix the material with a combustible solvent and burn in a chemical incinerator equipped with an afterburner and scrubber. All federal, state, and local environmental regulations must be observed

Precautions

Occupational workers should avoid contact of the adipic acid with the eyes, avoid breathing dust, and keep the container closed. Workers should use adipic acid only with adequate ventilation. Workers should wash thoroughly after handling adipic acid and keep away from heat, sparks, and flame. Also, workers should use rubber gloves and laboratory coats, aprons, or coveralls, and avoid creating a dust cloud when handling, transferring, and cleaning up.

Regulatory Status

GRAS listed. Included in the FDA Inactive Ingredients Database (IM, IV, and vaginal preparations). Accepted for use as a food additive in Europe. Included in an oral pastille formulation available in the UK. Included in the Canadian List of Acceptable Non-medicinal Ingredients.

Properties of Adipic acid

Melting point: 151-154 °C(lit.)
Boiling point: 265 °C100 mm Hg(lit.)
Density  1,36 g/cm3
vapor density  5 (vs air)
vapor pressure  1 mm Hg ( 159.5 °C)
refractive index  1.4880
FEMA  2011 | ADIPIC ACID
Flash point: 385 °F
storage temp.  Store below +30°C.
solubility  methanol: 0.1 g/mL, clear, colorless
form  Solid
pka 4.43(at 25℃)
color  White
PH 3.74(1 mM solution);3.22(10 mM solution);2.71(100 mM solution);
Odor wh. monoclinic prisms, pract. odorless
Water Solubility  1.44 g/100 mL (15 ºC)
Merck  14,162
JECFA Number 623
BRN  1209788
Exposure limits ACGIH: TWA 5 mg/m3
Dielectric constant 1.8(Ambient)
Stability: Stable. Substances to be avoided include ammonia, strong oxidizing agents.
CAS DataBase Reference 124-04-9(CAS DataBase Reference)
NIST Chemistry Reference Hexanedioic acid(124-04-9)
EPA Substance Registry System Adipic acid (124-04-9)

Safety information for Adipic acid

Signal word Danger
Pictogram(s)
ghs
Corrosion
Corrosives
GHS05
GHS Hazard Statements H318:Serious eye damage/eye irritation
Precautionary Statement Codes P280:Wear protective gloves/protective clothing/eye protection/face protection.
P305+P351+P338:IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continuerinsing.

Computed Descriptors for Adipic acid

InChIKey WNLRTRBMVRJNCN-UHFFFAOYSA-N

Abamectin manufacturer

Evans Fine Chem

1Y
Phone:+919821340302
Whatsapp: +91 9821340302
product: Adipic acid 99%
Inquiry

Chem stride

1Y
Phone:+918169461298
Whatsapp: +91 8169461298
product: Adipic Acid 124-04-9 99%
Inquiry

UNILOSA INTERNATINAL PRIVATE LIMITED

1Y
Phone:+919999069917
Whatsapp: +91 9999069917
product: 124-04-9 Adipic Acid 99%
Inquiry

PAARICHEM RESOURCES LLP

1Y
Phone:+918104961021
Whatsapp: +91 8104961021
product: ADIPIC ACID 99%
Inquiry

JSK Chemicals

1Y
Phone:+919879767970
Whatsapp: +91 9879767970
product: Adipic acid, 98% 99%
Inquiry

Dhara Industries

1Y
Phone:+91-9322395199
Whatsapp: +91 9322395199
product: Adipic acid 99%
Inquiry

LANXESS India Pvt. Ltd.

1Y
Phone:+91-8356878763
Whatsapp: +91 8356878763
product: 124-04-9 Adipic acid 98%
Inquiry

Merck Ltd

1Y
Phone:+91-2262109000
product: 124-04-9 98%
Inquiry

Pallav Chemicals And Solvents Pvt Ltd

1Y
Phone:+91-9136093115
Whatsapp: +91- 9136093115
product: Adipic Acid 99% Pure 124-04-9 99%
Inquiry

Related products of tetrahydrofuran

You may like

Statement: All products displayed on this website are only used for non medical purposes such as industrial applications or scientific research, and cannot be used for clinical diagnosis or treatment of humans or animals. They are not medicinal or edible.