Iodomethane
Synonym(s):Iodomethane;Methyl Iodide
- CAS NO.:74-88-4
- Empirical Formula: CH3I
- Molecular Weight: 141.94
- MDL number: MFCD00001073
- EINECS: 200-819-5
- SAFETY DATA SHEET (SDS)
- Update Date: 2024-08-19 17:35:41
What is Iodomethane?
Description
Methyl iodide is a colorless liquid with a pungent, ether-like odor. Turns yellow, red, or brown on exposureto light and moisture. Molecular weight = 141.94; Specificgravity (H2O:1) 5 2.28; Boiling point = 42.8℃; Vaporpressure 5 400 mmHg; Freezing/Melting point 5 2 66.7℃.It is noncombustible. Hazard Identification (based on NFPA704 M Rating System): Health 2, Flammability 1, Reactivity0. Slightly soluble in water; solubility 5 1%.
Chemical properties
light yellow to light pink liquid
Chemical properties
Methyl iodide is a colorless liquid. Pungent, ethereal odor. Turns yellow, red, or brown on exposure to light and moisture.
Physical properties
Clear, colorless liquid which may become yellow, red, or brown on exposure to light and moisture
The Uses of Iodomethane
.Iodomethane is an approved pesticide used to control insects, plant parasitic nematodes, soil borne pathogens and weed seeds.
The Uses of Iodomethane
Methylating agent; in microscopy because of its high refractive index; as imbedding material for examining diatoms; in testing for pyridine. Light sensitive etching agent for electronic circuits; component in fire extinguishers.
The Uses of Iodomethane
Methyl iodide is used in the analysis of pyridine; microscopy; as an embedding materialfor examining diatoms (Merck 1996); and asa methylating agent.
Definition
ChEBI: A member of the class of iodomethanes that is methane in which one of the hydrogens is replaced by iodine.
Definition
(methyl iodide; CH3I) A liquid alkyl halide made by reaction of methanol with iodine in the presence of red phosphorus.
Production Methods
Methyl iodide has had very limited use as a chemical intermediate (methylations), and in microscopy because of its high refractive index, as imbedding materials for examining diatoms, and in tests for pyridine. It has been proposed as a fire extinguisher and insecticidal fumigant. It is a product of natural biological processes. Methyl iodide is a currently registered pesticide.
General Description
A colorless liquid that turns brown on exposure to light. Denser than water. Contact may irritate skin, eyes and mucous membranes. Very toxic by ingestion, inhalation and skin absorption.
Air & Water Reactions
Soluble in water. Sinks and slowly decomposes in water forming poisonous vapor cloud of HI.
Reactivity Profile
Halogenated aliphatic compounds, such as Iodomethane, are moderately or very reactive. Reactivity generally decreases with increased degree of substitution of halogen for hydrogen atoms. Low molecular weight haloalkanes are highly flammable and can react with some metals to form dangerous products. Materials in this group are incompatible with strong oxidizing and reducing agents. Also, they are incompatible with many amines, alkylphosphines, nitrides, azo/diazo compounds, alkali metals (sodium), and epoxides.
Hazard
Toxic by ingestion, inhalation, and skinabsorption; narcotic, irritant to skin. Eye damageand central nervous system impairment. Question-able carcinogen.
Health Hazard
Inhalation of vapor causes lung congestion and pulmonary edema. Higher concentrations causes rapid narcosis and death. Contact with liquid irritates eyes and burns skin.
Health Hazard
The acute toxicity of methyl iodide is moderate by ingestion, inhalation, and skin
contact. This substance is readily absorbed through the skin and may cause systemic
toxicity as a result. Methyl iodide is moderately irritating upon contact with the skin
and eyes. Methyl iodide is an acute neurotoxin. Symptoms of exposure (which may
be delayed for several hours) can include nausea, vomiting, diarrhea, drowsiness,
slurred speech, visual disturbances, and tremor. Massive overexposure may cause
pulmonary edema, convulsions, coma, and death.
Chronic exposure to methyl iodide vapor may cause neurotoxic effects such as
dizziness, drowsiness, and blurred vision. There is limited evidence for the
carcinogenicity of methyl iodide to experimental animals; it is not classified as an
OSHA "select carcinogen."
Health Hazard
The acute oral toxicity and inhalation toxicity of methyl iodide is moderate in test animals. It is more toxic than methyl bromide.The toxic symptoms are nausea, vomiting,diarrhea, ataxia, drowsiness, slurred speech,visual disturbances, and tremor. Pulmonaryedema, coma, and death can result from massive exposures. The vapors are an irritantto the eyes. Repeated exposures may causedepression of the central nervous system.Prolonged contact with the liquid can causeskin burn and dermatitis. The reported valuesof LD50, as well as LC50, for this compoundas published in the literature show variations.The fatal doses by inhalation and ingestionare 900 ppm/h in mice and 150 mg/kg inrats, respectively (Buckell 1950)
.Methyl iodide exhibited carcinogenic pro perties in test animals. Administration of thiscompound produced tumors in lungs andcolon. ACGIH (1986) lists it as a suspectedhuman carcinogen.
Fire Hazard
Noncombustible. High vapor pressure may cause containers to burst at elevated temperatures.
Flammability and Explosibility
Noncombustible. High vapor pressure may cause containers to burst at elevated temperatures.
Safety Profile
Confirmed carcinogen with experimental neoplastigenic and tumorigenic data. A poison by ingestion, intraperitoneal, and subcutaneous routes. Moderately toxic by inhalation and skin contact. A human skin irritant. Human mutation data reported. A strong narcotic and anesthetic. Explosive reaction with trialkylphosphines, silver chlorite. Violent reaction with oxygen (at 3000C), sodium. When heated to decomposition it emits toxic fumes of I-.
Potential Exposure
Methyl iodide is used in fire extinguishers; as an intermediate in the manufacture of pharmaceuticals and some pesticides.
First aid
If this chemical gets into the eyes, remove anycontact lenses at once and irrigate immediately for at least15 min, occasionally lifting upper and lower lids. Seek med-First Aid: If this chemical gets into the eyes, remove anycontact lenses at once and irrigate immediately for at least15 min, occasionally lifting upper and lower lids. Seek med-ical attention immediately. If this chemical contacts theskin, remove contaminated clothing and wash immediatelywith soap and water. Seek medical attention immediately. Ifthis chemical has been inhaled, remove from exposure,begin rescue breathing (using universal precautions, includ-ing resuscitation mask) if breathing has stopped and CPR ifheart action has stopped. Transfer promptly to a medicalfacility. When this chemical has been swallowed, get medi-cal attention. If victim is conscious, administer water ormilk. Do not induce vomiting. Medical observation isrecommended for 24- -48 h after breathing overexposure, aspulmonary edema may be delayed. As first aid for pulmo-nary edema, a doctor or authorized paramedic may consideradministering a corticosteroid spray.Note to physician:Treatfor methemoglobinemia.Spectrophotometry may be required for precise determina-tion of levels of methemoglobin in urine.
Carcinogenicity
Druckrey et al. reported
local sarcomas following weekly subcutaneous injection in
BD strain rats. Strain A mice (a susceptible strain) that were
injected with methyl iodide were reported to have a slight but
significant increase in the number of lung tumors per mouse.
Poirer et al. administered iodomethane dissolved in
tricaprylin to male and female strain A mice (10/sex/dose)
three times weekly by intraperitoneal injection. There was a
marginally statistically significant trend for increased lung
tumors in treated mice but the outcome was considered
equivocal: no clear dose–response relationship and occurrence
of spontaneous tumors in untreated mice.
Under the 2005 Guidelines for Carcinogen Risk Assessment
(121), the lack of available evidence suggests that there
is “inadequate information to assess the carcinogenic potential
for iodomethane.”
An early evaluation by the IARC classified
iodomethane as carcinogenic in rats. Two subsequent evaluations
(123, 124) determined that there is limited evidence
for carcinogenicity in experimental animals and the compound
is not classifiable regarding carcinogenicity to
humans. ACGIH has also reviewed iodomethane
carcinogenicity and classified it as category A2, suspected
human carcinogen; however, the A2 classification was withdrawn
in 1996. Iodomethane was delisted as a carcinogen
in the NTP 5th Annual Report on Carcinogens on the
basis of the 1986 IARC reevaluation. NTP
has not tested iodomethane for carcinogenicity. The State of
California determined under Proposition 65 that methyl
iodide is a carcinogen, based on the 1977 IARC evaluation. Neither a Toxicological Profile nor an
Environmental Health Criteria Monograph has been
published.
Environmental Fate
Chemical/Physical. Anticipated products from the reaction of methyl iodide with ozone or OH
radicals in the atmosphere are formaldehyde, iodoformaldehyde, carbon monoxide, and iodine
radicals (Cupitt, 1980). With OH radicals, CH2, methyl radical, HOI and water are possible
reaction products (Brown et al., 1990). The estimated half-life of methyl iodide in the atmosphere,
based on a measured rate constant for the vapor phase reaction with OH radicals, ranges from 535
h to 32 wk (Garraway and Donovan, 1979).
Hydrolyzes in water forming methyl alcohol and hydriodic acid. The estimated half-life in water
at 25 °C and pH 7 is 110 d (Mabey and Mill, 1978). At 70 °C, the hydrolysis rate was determined
to be 3.2 x 10-5/sec which is equivalent to a half-life of 6 h. (Glows and Wren, 2003). May react
with chlorides in seawater to form methyl chloride (Zafiriou, 1975).
storage
Color Code—Blue: Health Hazard/Poison: Storein a secure poison location. Prior to working with thischemical you should be trained on its proper handling andstorage. Store in tightly closed containers in a cool, wellventilated area away from oxidizers. Where possible, automatically pump liquid from drums or other storage containers to process containers. A regulated, marked area shouldbe established where this chemical is handled, used, orstored in compliance with OSHA Standard 1910.1045.
Shipping
UN2644 Methyl iodide, Hazard Class: 6.1; Labels: 6.1-Poison Inhalation Hazard, Inhalation Hazard Zone B
Purification Methods
Methyl iodide deteriorates rapidly with liberation of iodine if exposed to light. It is usually purified by shaking with dilute aqueous Na2S2O3 or NaHSO3 until colourless, then washing with water, dilute aqueous Na2CO3, and more water, drying with CaCl2 and distilling. It is stored in a brown bottle away from sunlight in contact with a small amount of mercury, powdered silver or copper. (Prolonged exposure of mercury to methyl iodide forms methylmercuric iodide.) Methyl iodide can be dried further using CaSO4 or P2O5. An alternative purification is by percolation through a column of silica gel or activated alumina, then distillation. The solution can be degassed by using a repeated freeze-pump-thaw cycle. [Beilstein 1 IV 87.]
Incompatibilities
May form explosive mixture with air. Slowly reacts with water forming poisonous hydrogen iodide. Incompatible with oxidizers (chlorates, nitrates, peroxides, permanganates, perchlorates, chlorine, bromine, fluorine, etc.); contact may cause fires or explosions. Keep away from alkaline materials, strong bases, strong acids, oxoacids, epoxides. Violent reaction with strong oxidizers, strong reducing agents, strong bases; trialkylphosphines, silver chlorite; calcium, oxygen, sodium. Decomposes @ 270C. Halogenated aliphatic compounds are moderately or very reactive. Halogenated organics generally become less reactive as more of their hydrogen atoms are replaced with halogen atoms. Low molecular weight haloalkanes are highly flammable and can react with some metals to form dangerous products. Materials in this group are incompatible with strong oxidizing and reducing agents. Also, they are incompatible with many amines, alkylphosphines, nitrides, azo/diazo compounds, alkali metals (sodium), and epoxides
Waste Disposal
Consult with environmental regulatory agencies for guidance on acceptable disposal practices. Generators of waste containing this contaminant (≥100 kg/mo) must conform to EPA regulations governing storage, transportation, treatment, and waste disposal
Properties of Iodomethane
Melting point: | −64(lit.) |
Boiling point: | 41-43 °C |
Density | 2.28 g/mL at 25 °C(lit.) |
vapor density | 4.89 (vs air) |
vapor pressure | 24.09 psi ( 55 °C) |
refractive index | n |
Flash point: | −18 °F |
storage temp. | 2-8°C |
solubility | water: soluble14g/L at 20°C |
form | Liquid |
appearance | Colorless liquid |
color | Clear |
Specific Gravity | 2.280 |
PH | 5.2 (H2O, 25℃) |
Odor | Sweet, ethereal odor |
Water Solubility | 14 g/L (20 ºC) |
Sensitive | Light Sensitive |
Merck | 14,6087 |
BRN | 969135 |
Henry's Law Constant | 5.06 at 21 °C (Gan and Yates, 1996) |
Exposure limits | TLV-TWA 2 ppm (~11 mg/m3) (ACGIH),
5 ppm (MSHA and OSHA); carcinogenicity:
Animal Limited Evidence (IARC), Suspected
Human Carcinogen. |
Dielectric constant | 7.0(20℃) |
Stability: | Light Sensitive |
CAS DataBase Reference | 74-88-4(CAS DataBase Reference) |
IARC | 3 (Vol. 41, Sup 7, 71) 1999 |
NIST Chemistry Reference | Methyl iodide(74-88-4) |
EPA Substance Registry System | Methyl iodide (74-88-4) |
Safety information for Iodomethane
Signal word | Danger |
Pictogram(s) |
Flame Flammables GHS02 Skull and Crossbones Acute Toxicity GHS06 Health Hazard GHS08 Environment GHS09 |
GHS Hazard Statements |
H226:Flammable liquids H312:Acute toxicity,dermal H315:Skin corrosion/irritation H319:Serious eye damage/eye irritation H335:Specific target organ toxicity, single exposure;Respiratory tract irritation H351:Carcinogenicity H410:Hazardous to the aquatic environment, long-term hazard |
Precautionary Statement Codes |
P210:Keep away from heat/sparks/open flames/hot surfaces. — No smoking. P273:Avoid release to the environment. P280:Wear protective gloves/protective clothing/eye protection/face protection. P301+P310:IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician. P303+P361+P353:IF ON SKIN (or hair): Remove/Take off Immediately all contaminated clothing. Rinse SKIN with water/shower. |
Computed Descriptors for Iodomethane
Abamectin manufacturer
Prachi Pharmaceuticals Pvt Ltd
Proto Chemicals Industries
Ritesh Chemical Industries
New Products
4-Aminotetrahydropyran-4-carbonitrile Hydrochloride (R)-3-Aminobutanenitrile Hydrochloride 4-AMINO-TETRAHYDRO-PYRAN-4-CARBOXYLIC ACID HCL 4-(Dimethylamino)tetrahydro-2H-pyran-4-carbonitrile 3-((Dimethylamino)methyl)-5-methylhexan-2-one oxalate 1,4-Dioxa-8-azaspiro[4.5]decane 5-Bromo-2-nitropyridine Nimesulide BP Aceclofenac IP/BP/EP Diclofenac Sodium IP/BP/EP/USP Mefenamic Acid IP/BP/EP/USP Ornidazole IP Diclofenac Potassium SODIUM AAS SOLUTION ZINC AAS SOLUTION BUFFER SOLUTION PH 10.0(BORATE) GOOCH CRUCIBLE SINTERED AQUANIL 5 BERYLLIUM AAS SOLUTION 2-Bromo-1-(bromomethyl)-3-chloro-5-nitrobenzene 2-Bromo-3-nitroaniline N-(3-Hydroxypropyl)-N-methylacetamide 3-Bromo-6-chloropyridazine 4-ethyl-3-nitrobenzoic acidRelated products of tetrahydrofuran
You may like
-
Methyl Iodide 98%View Details
-
74-88-4 98%View Details
74-88-4 -
Iodomethane (Methyl Iodide) (SQ) CAS 74-88-4View Details
74-88-4 -
Methyl Iodide CAS 74-88-4View Details
74-88-4 -
Iodomethane CAS 74-88-4View Details
74-88-4 -
Iodomethane CAS 74-88-4View Details
74-88-4 -
Methyl Iodide (Iodomethane) extrapure CAS 74-88-4View Details
74-88-4 -
Methyl iodide 98% CAS 74-88-4View Details
74-88-4