Contact us: +91 9550333722 040 - 40102781
Structured search
India
Choose your country
Different countries will display different contents
Try our best to find the right business for you.
My chemicalbook

Welcome back!

HomeProduct name listSodium azide

Sodium azide

Synonym(s):Additive Screening Solution 45/Kit-No 78374;Hydrazoic acid sodium salt;NSC 3072;Sodium azide solution

  • CAS NO.:26628-22-8
  • Empirical Formula: N3Na
  • Molecular Weight: 65.01
  • MDL number: MFCD00003536
  • EINECS: 247-852-1
  • SAFETY DATA SHEET (SDS)
  • Update Date: 2024-03-19 13:53:49
Sodium azide Structural

What is Sodium azide?

Description

Sodium azide is highly toxic and should be handled very carefully. Azides in general are known to have the potential to decompose explosively. Always consider alternative chemistry before using sodium azide.

Chemical properties

Colorless, hexagonal crystals. Decom- poses at about 300C. Soluble in water and in liquid ammonia; slightly soluble in alcohol; hydrolyzes to form hydrazoic acid. Combustible.

Chemical properties

Sodium azide is a colorless to white, odorless, crystalline solid. Combustible solid above 300°C.

Physical properties

Colorless hexagonal crystals; density 1.846 g/cm3 at 20°C; decomposes on heating to produce sodium and nitrogen; also decomposes in vacuum; soluble in water partially converting to hydrazoic acid, solubility in water, 41.7 g/100mL; slightly soluble in alcohol, 0.316g/100mL at 16°C; soluble in liquid ammonia.

The Uses of Sodium azide

Biomedical Sciences
Sodium azide is a biocide that is used in making chemical preservatives that are used in laboratories and hospitals. In hospitals, it is used as a preservative in blood tests and diagnostic machines. Since the chemical is soluble, it can act as useful metabolic inhibitors that can affect the activities of numerous oxidative enzymes. Specifically, it inhibits oxidative enzymes that are involved in electron transport system respiration. However, accidents have occurred whenever sodium azide is used in a hospital setting; therefore, major bodies such as the CDC that deal with chemicals do not advise the use of the compound.
Automobiles Airbags
Before the 1990s, sodium azide was used in airbags. In airbags, when electricity heats sodium azide to approximately 300oC, it decomposes into two simple components, namely sodium and nitrogen gas. The decomposition of sodium azide happens very fast that the filling of the airbag with nitrogen gas occurs at a velocity of around 200 miles per hour.
Agriculture
Sodium azide is used for pest control due to its ready solubility in water. Nitrifying bacteria acts as a catalyst that decomposes the sodium azide solution to release nitrate, HN3, and NH4+ when added to the soil. It is noteworthy that these components have wide range of activity against nematodes, weeds, and phytopathogenic fungi that is soil-borne. The chemical is typically applied through drip irrigation to avoid reactivity of HN3 in the soil-air space that can eventually result in an active compound that can be ineffective for pest control.
Detonators
When combined with other metals such as copper (Cu), lead (Pb), and mercury (Hg), sodium azide becomes unstable and explosive. As such, it is mostly used as detonators due to its explosive nature.
A summary of main uses is listed in the table below:

Industry
Application
Role/benefit
Chemical manufacture
Preparation of other inorganic azide compounds, such as lead azide and silver azide
Precursor
Preparation of organic azide compounds
Azidation agent
Agriculture
Pest control of soil-borne pathogens
Biocide
Crop selection of plants such as rice,barley or oats
Mutagen
Pharmaceutical
Preparation of tetrazoles pharmaceutical intermediates
Raw material
Airbags
Automobile airbags and aircraft safety chutes
Gas source/generates n2 after automobile crash
Antisepsis and sterilization
Preservation of bulk reagents and stock solutions in hospitals and laboratories
Biocide/inhibits the cytochrome oxidase in gram-negative bacteria
Photographic emulsion
Preservative/works without influencing the performance of photographic emulsion
Explosive
Manufacture of detonating agent(lead azide)
Raw material
Others
Manufacture of synthetic resin
Foaming agent/generates N2 during the reaction
Manufacture of Na
Raw material/2NaN3→2Na+3N2

The Uses of Sodium azide

Sodium azide
To a solution of the SM (0.3 g, 0.97 mmol) in DMF (10 mL) was added NaN3 (127 mg, 1.94 mmol) at 0 C. The reaction mixture was stirred at RT for 16 h. The mixture was diluted with EtOAc and H2O.? The org layer was separated, dried (Na2SO4), and concentrated to provide the crude product as a syrup which was used in the next step without further purification. [170 mg]

The Uses of Sodium azide

Sodium azide is used in making othermetal azides, therapeutically to control bloodpressure, as a propellant for automotivesafety bags, as a preservative for laboratoryreagents, as an analytical reagent, andin organic synthesis. It is also used as anantifading reagent for immunofluorescence(Boeck et al. 1985).

The Uses of Sodium azide

In airbag inflation, as a preservative in diagnostic medicinals.Sodium azide is used in organic synthesis for the introduction of an azide group to prepare a desired compound. It acts as a precursor to prepare inorganic azides like lead azide and silver azide. In biochemistry, it is useful as a probe reagent and a preservative. It also acts as a nitridizing agent and cytochrome oxidase inhibitor. Further, it is used as a propellant in airbags.

What are the applications of Application

Sodium azide is a cytochrome oxidase inhibitor commonly used as a bacteriostatic preservative for biological samples.

What are the applications of Application

Azide, 2% solution is a preservative used in biologic solutions

Definition

sodium azide: A white or colourlesscrystalline solid, NaN3, soluble inwater and slightly soluble in alcohol;hexagonal; r.d. 1.846; decomposes onheating. It is made by the action ofnitrogen(I) oxide on hot sodamide(NaNH2) and is used as an organicreagent and in the manufacture ofdetonators.

Production Methods

Sodium azide can be prepared from sodium metal and liquid ammonia in the presence of ferric chloride. The amide formed is treated with nitrous oxide to produce the azide.

Preparation

Sodium azide is prepared by reacting sodium amide with nitrous oxide. The amide is heated with nitrous oxide at 200°C or its solution in liquid ammonia is treated with nitrous oxide at ambient temperature: 2NaNH2 + N2O → NaN3 + NaOH + NH3.

Reactivity Profile

Sodium azide is unstable. Decomposes rapidly or explosively at about 300°C [Hawley]. May explode if shocked. Forms violently explosive products if exposed to carbon disulfide. Can be sensitized toward decomposition by metal salts (especially heavy metal salts such as silver chloride) or by traces of strong acids [Sax, 9th ed., 1996, p. 298].

Hazard

Sodium azide is a toxic as well as an explosive substance (Patnaik, P. 1999. A Comprehensive Guide to the Hazardous Properties of Chemical Substances, 2np ed. New York: John Wiley & Sons). Although inert to shock, violent decomposition can occur when heated at 275°C. Contact of solid or solution with lead and copper must be avoided. Reactions with halogens, carbon disulfide, or chromyl chloride can be explosive. Dissolution in water produces toxic vapors of hydrazoic acid. The salt is an acute poison causing headache, hypotension, hypothermia, and convulsion. LD50 oral (rats): 27 mg/kg.

Health Hazard

Can cause death by affecting the central nervous system. Contact may cause burns to skin and eyes.

Health Hazard

The acute toxicity of sodium azide is high. Symptoms of exposure include lowered blood pressure, headache, hypothermia, and in the case of serious overexposure, convulsions and death. Ingestion of 100 to 200 mg in humans may result in headache, respiratory distress, and diarrhea. Target organs are primarily the central nervous system and brain. Sodium azide rapidly hydrolyzes in water to form hydrazoic acid, a highly toxic gas that can escape from solution, presenting a serious inhalation hazard. Symptoms of acute exposure to hydrazoic acid include eye irritation, headache, dramatic decrease in blood pressure, weakness, pulmonary edema, and collapse. Solutions of sodium azide can be absorbed through the skin. Sodium azide has not been found to be carcinogenic in humans. Chronic, low-level exposure may cause nose irritation, episodes of falling blood pressure, dizziness, and bronchitis.

Health Hazard

Sodium azide is a highly toxic compound;the order of toxicity is the same as that ofhydrazoic acid. It is converted to hydrazoicacid in water. The aqueous solutions ofsodium azide contains hydrazoic acid, whichescapes at 37°C (98°F), presenting a dangerof inhalation toxicity.
Sodium azide, by itself, is a severe acutetoxicant causing hypotension, headache,tachpnea, hypothermia, and convulsion.The toxic symptoms from ingestion of100–200 mg in humans may result inheadache, respiratory distress, hypermotility,and diarrhea. An oral intake of 10–20 g may be fatal to humans. The target organsare primarily the central nervous system andbrain. There are reports on azide poisoningof brain and nerve tissue (ACGIH 1986;Mettler 1972). Owing to the availability ofelectron pairs in azide ion for coordinatebonding, azide forms strong complexes withhemoglobin, which blocks oxygen transportto the blood (Alben and Fager 1972).
LD50 value, oral (rats): 27 mg/kg
Sodium azide is strongly mutagenic in theAmes test. However, it shows a very weakmutagenic effect on Saccharomyces cerevisiaeC658-K42 (Morita et al. 1989). Macoret al. (1985) found that light decreased themutagenic effect of sodium azide to inducehereditary bleaching of Euglena gracilis.Carcinogenicity of this compound on animalsor humans has not yet been fully established,although skin and endocrine tumors in ratshave been observer (NIOSH 1986).

Fire Hazard

When heated to decomposition, Sodium azide emits very toxic fumes of nitrogen oxides; explosive. Forms explosive-sensitive materials with some metals such as lead, silver, mercury or copper. May form toxic hydrazoic acid fumes in fire. Containers may explode in fire. Avoid acids, benzoyl chloride and potassium hydroxide; bromine; carbon disulfide; copper; lead; nitric acid; barium carbonate; sulfuric acid; chromium (II) hypochlorite, dimethyl sulfate, water, dibromomalononitrile, lead, silver, copper, mercury. Hazardous polymerization may not occur.

Fire Hazard

Flammability hazard is low, but violent decomposition can occur when heated to 275 °C. Decomposition products include oxides of nitrogen and sodium oxide.

Flammability and Explosibility

Flammability hazard is low, but violent decomposition can occur when heated to 275 °C. Decomposition products include oxides of nitrogen and sodium oxide.

Biochem/physiol Actions

Sodium azide is a preservative for laboratory reagents. It also works as a plant mutagen. It is a F-type ATPase inhibitor and selectively inhibits ceruloplasmin.Sodium azide 0.1M solution is an additive screening solution of Additive Screening Kit. Additive Screen kit is designed to allow rapid and convenient evaluation of additives and their ability to influence the crystallization of the sample. The Additive Kit provides a tool for refining crystallization conditions.

Safety Profile

Poison by ingestion, skin contact, intraperitoneal, intravenous, and subcutaneous routes. Human systemic effects by ingestion: general anesthesia, somnolence, and hdney changes. Questionable carcinogen with experimental tumorigenic data. Human mutation data reported. Violent reaction with benzoyl chloride combined with KOH, Br2, barium carbonate, CS2, Cr(OCl)2, Cu, Pb, HNO3, BaCO3, H2SO4, hot water, (CH3)2SO4, dibromomalononitrile, sulfuric acid. Incompatible with acids, ammonium chloride + trichloroacetonitrile, phosgene, cyanuric chloride ,2,5 -dinitro3 methylbenzoic acid + oleum, trifluroroacryloyl chloride. Reacts with heavy metals (e.g., brass, copper, lead) to form dangerously explosive heavy metal azides, a particular problem in laboratory equipment and drain traps. When heated to decomposition it emits very toxic fumes of NOx and Na2O. See also AZIDES.

Potential Exposure

Sodium azide is used as preservative and diluent. It has been used for a wide variety of military, laboratory, medicine, and commercial purposes. It is used extensively as an intermediate in the production of lead azide, commonly used in detonators, and other explosives. Reported to be used in automobile air-bag inflation. One of the largest potential exposure is that to automotive workers, repairmen, and wreckers, if sodium azide is used as the inflation chemical. Commercial applications include use as a fungicide, nematocide, and soil sterilizing agent and as a preservative for seeds and wine. The lumber industry has used sodium azide to limit the growth of enzymes responsible for formation of brown stain on sugar pine, while the Japanese beer industry used it to prevent the growth of a fungus which darkens its product. The chemical industry has used sodium azide as a retarder in the manufacture of sponge rubber, to prevent coagulation of styrene and butadiene latexes stored in contact with metals; and to decompose nitrites in the presence of nitrates.

storage

In particular, work with sodium azide should be conducted in a fume hood to prevent exposure by inhalation, and appropriate impermeable gloves and splash goggles should be worn at all times to prevent skin and eye contact. Containers of sodium azide should be stored in secondary containers in a cool, dry place separated from acids.

Shipping

UN1687 Sodium azide, Hazard Class: 6.1; Labels: 6.1-Poisonous materials.

Purification Methods

Crystallise sodium azide from hot water or from water by adding absolute EtOH or acetone. Also purify it by repeated crystallisation from an aqueous solution saturated at 90o by cooling it to 10o, and adding an equal volume of EtOH. The crystals are washed with acetone, and the azide is dried at room temperature under vacuum for several hours in an Abderhalden pistol. Its solubility in H2O is 42% at 18o, and in EtOH it is 0.22% at 0o. [Das et al. J Chem Soc, Faraday Trans 1 78 3485 1982, Schenk in Handbook of Preparative Inorganic Chemistry (Ed. Brauer) Academic Press Vol I pp 474-475 1963, Browne Inorg Synth 1 79 1939, Frierson Inorg Synth II 139 1946.] HIGHLY POISONOUS and potentially explosive.

Incompatibilities

Reacts explosively and/or forms explosive and/or shock sensitive compounds with acids and many metals. Contact with water forms hydrazoic acid. Combustible solid (if heated above 275C). May explode when heated above its melting point, especially if heating is rapid. Reacts with acids; producing toxic, shock-sensitive, and explosive hydrogen azide. It forms explosive compounds with phosgene, brass, zinc, trifluoroacrylol fluoride, and nitrogendiluted bromine vapor. Reacts with benzoyl chloride and potassium hydroxide, bromine, carbon disulfide; copper, lead, nitric acid; barium carbonate; sulfuric acid; chromium (II) hypochlorite; dimethyl sulfate; dibromomalononitrile, silver, mercury. Over a period of time, sodium azide may react with copper, lead, brass, or solder in plumbing systems to form an accumulation of the highly explosive and shock-sensitive compounds of lead azide and copper azide

Waste Disposal

Consult with environmental regulatory agencies for guidance on acceptable disposal practices. Generators of waste containing this contaminant (≥100 kg/mo) must conform to EPA regulations governing storage, transportation, treatment, and waste disposal. Disposal may be accomplished by reaction with sulfuric acid solution and sodium nitrate in a hard rubber vessel.Nitrogen dioxide is generated by this reaction and the gas is run through a scrubber before it is released to the atmosphere. Controlled incineration is also acceptable (after mixing with other combustible wastes) with adequate scrubbing and ash disposal facilities.

Properties of Sodium azide

Melting point: 275 °C
Boiling point: 300 °C
Density  1.85
vapor pressure  0Pa at 20℃
Flash point: 300 °C
storage temp.  2-8°C
solubility  H2O: 1 M at 20 °C, clear, colorless
form  Powder/Solid
appearance White solid
pka pK = 4.8, aq solns contains HN3 which escapes readily at 37°
color  White to off-white
Specific Gravity 1.85
Odor Odorless solid
Water Solubility  420 g/L (17 ºC)
Sensitive  Air & Moisture Sensitive
Merck  14,8581
Exposure limits Ceiling 0.3 mg/m3 in air (ACGIH).
Stability: Unstable. Avoid heat, sources of ignition, moisture, shock, friction. Incompatible with strong oxidizing agents, mineral acids, water, halogen acids and halogen compounds, barium carbonate, bromine, carbon disulphide, mercury, dimethyl sulphate, common metals, especially brass, copper, lead, silver, strong acids.
CAS DataBase Reference 26628-22-8(CAS DataBase Reference)
EPA Substance Registry System Sodium azide (26628-22-8)

Safety information for Sodium azide

Signal word Danger
Pictogram(s)
ghs
Skull and Crossbones
Acute Toxicity
GHS06
ghs
Health Hazard
GHS08
ghs
Environment
GHS09
GHS Hazard Statements H373:Specific target organ toxicity, repeated exposure
H410:Hazardous to the aquatic environment, long-term hazard
Precautionary Statement Codes P262:Do not get in eyes, on skin, or on clothing.
P273:Avoid release to the environment.
P280:Wear protective gloves/protective clothing/eye protection/face protection.
P314:Get medical advice/attention if you feel unwell.

Computed Descriptors for Sodium azide

Related products of tetrahydrofuran

You may like

Statement: All products displayed on this website are only used for non medical purposes such as industrial applications or scientific research, and cannot be used for clinical diagnosis or treatment of humans or animals. They are not medicinal or edible.