Miglitol
Synonym(s):1-(2-Hydroxyethyl)-2-(hydroxymethyl)piperidine-3,4,5-triol
- CAS NO.:72432-03-2
- Empirical Formula: C8H17NO5
- Molecular Weight: 207.22
- MDL number: MFCD00867240
- EINECS: 276-661-6
- SAFETY DATA SHEET (SDS)
- Update Date: 2023-07-04 17:14:15
What is Miglitol ?
Absorption
Absorption of miglitol is saturable at high doses with 25 mg being completely absorbed while a 100-mg dose is only 50-70% absorbed. No evidence exists to show that systemic absorption of miglitol adds to its therapeutic effect.
Toxicity
Unlike sulfonylureas or insulin, an overdose will not result in hypoglycemia. An overdose may result in transient increases in flatulence, diarrhea, and abdomi-nal discomfort. Because of the lack of extra-intestinal effects seen with miglitol, no serious systemic reactions are expected in the event of an overdose.
Description
Miglitol was introduced in Germany as an auxiliary treatment for non-insulin dependent diabetes (NIDDM). A simple two-step synthesis of Miglitol consists of converting 6-desoxy-6-aminosorbose into desoxynojirimycin by reductive cyclization, then selectively hydroxyethylating the cyclic nitrogen. Miglitol is a short-acting intestinal alpha-D-glucosidase inhibitor, reducing postprandial glucose excursions by helping to delay absorption of complex carbohydrates. Acarbose and voglibose are the previous compounds marketed in this class. At low doses, orally administered miglitol was shown to be rapidly and completely absorbed then removed by renal excretion.
Chemical properties
white to light yellow crystal powde
Originator
Bayer (Germany)
The Uses of Miglitol
An inhibitor of alpha-glucosidases.
The Uses of Miglitol
A potent α-glucosidase inhibitor. A new antidiabetic drug.
The Uses of Miglitol
antibacterial
Background
Miglitol inhibits the breakdown complex carbohydrates into glucose. It is primarily used in diabetes mellitus type 2 for establishing greater glycemic control by preventing the digestion of carbohydrates (such as disaccharides, oligosaccharides, and polysaccharides) into monosaccharides which can be absorbed by the body.
Miglitol should be taken at the start of a meal for maximal effect and the effect will depend on the amount of poly and oligosaccharides in the diet. Miglitol inhibits alpha-glucosidase, making less sugars available for digestion and reducing postprandial hyperglycemia.
Unlike other drugs of the same class, miglitol is not metabolized and the unmetabolized drug is excreted by the kidneys.
Indications
For use as an adjunct to diet to improve glycemic control in patients with non-insulin-dependent diabetes mellitus (NIDDM) whose hyperglycemia cannot be managed with diet alone.
What are the applications of Application
Miglitol is an antidiabetic compound
Indications
Miglitol [Glyset] is the second alpha-glucosidase inhibitor approved in the United States. Like acarbose, miglitol delays conversion of oligosaccharides and complex carbohydrates to glucose and other monosaccharides, and thereby reduces the postprandial rise in blood glucose. In clinical trials, the drug was especially effective among Latinos and African Americans. Hypoglycemia does not occur with miglitol monotherapy, but may occur if the drug is combined with insulin or a sulfonylurea. Like acarbose, miglitol causes flatulence, abdominal discomfort, and other GI effects. In contrast to acarbose, miglitol has not been associated with liver dysfunction. As with acarbose therapy, oral sucrose cannot be used to treat hypoglycemia. Rather, oral glucose must be given. Miglitol is available in 25-, 50-, and 100-mg tablets. The initial dosage is 25 mg 3 times daily before meals. The maintenance dosage is 50 or 100 mg 3 times a day.
Production Methods
Miglitol requires 1-deoxynojirimycin as a precursor which can be obtained via three different routes: extraction from plants such as the mulberry tree, fermentation using various bacterial strains, and a complete chemical synthesis. Industrially feasible production of miglitol was, however, restricted by expensive purification steps or low yields. Hence, a new approach was adopted in which a combination of biochemical and chemical synthesis was employed (Schedel, 2000). In this approach, D-glucose is converted to 1-amino-D-sorbitol by reduction with suitable amines and hydrogen, with nickel as catalyst, and then further reaction of products with appropriate acid esters (Kinast and Schedel, 1979). The oxidation of 1-amino-D-sorbitol to 6-amino-L-sorbose is then carried out in a fermenter using Gluconobacter oxydans grown at temperatures between 20 and 45 C, preferably at roomtemperature and maintaining thepHbetween 2.0 and 9.0. At this pH, 6-amino-L-sorbose is present in the medium as piperidinose, which is reduced to 1-desoxy-nojirimycin in the presence of inert solvents and by choosing the appropriate pH. After this, miglitol is obtained by first centrifuging the biomass followed by clarification using active charcoal. Next, separation of catalyst, evaporation of solvents, and isolation of any remaining salts in the medium is carried out (Kinast and Schedel, 1979). An important modification necessary in this process is the addition of protection groups before feeding 1-amino-D-sorbitol to the G. oxydans cultures and their subsequent removal before the ring-closure reaction. This is necessary since1-amino-D-sorbitol is readily oxidized by G. oxydans strains to form 3-hydroxy-2-hydroxymethyl-pyridine at near-neutral pH as a result of spontaneous ring closure (Schedel, 2000).
Definition
ChEBI: Miglitol is a member of piperidines.
Manufacturing Process
50 g (0.23 mole) of 6-amino-6-desoxy-L-sorbose hydrochloride were dissolved in 500 ml of distilled water, and the solution was added in the course of onehour to a solution of 11.2 g of dimethylaminoborane in 500 ml of distilledwater, whilst stirring at a temperature of 50°C. The mixture was stirred forone hour at room temperature and one hour at 50°C, 5 ml of triethylaminewere added to it, and it was then poured over a column containing 800 ml ofstrongly basic ion exchanger ("Lewatit" MP 500 OH--form). The exchangerwas washed with distilled water, and the runnings collected were concentratedto a syrup on a rotary evaporator. The concentrated syrup was crystallised at50°C on addition of a large amount of ethanol. The suspension of crystals wascooled and filtered off under suction, and the crystalline product was dried ina vacuum drying cabinet. Yield: 30 g, 80% of theory. MP: 192°-193°C.
25 g (0.115 mole) 1,5-didesoxy-1,5-imino-D-glucitol of 6-amino-6-desoxy-L-sorbose hydrochloride were dissolved in 200 ml of distilled water, and thesolution was added at 5°C to a mixture of 4.8 g of NaBH4, 250 ml ofethanol/water 1:1 and 16.2 ml of triethylamine, whilst stirring. The mixturewas further stirred for one hour at room temperature and one hour at 50°C.,and the reaction mixture was poured over a column containing 400 ml ofstrongly basic ion exchanger ("Lewatit" MP 500 OH-form). The exchanger waswashed with distilled water, and the eluate collected was concentrated to asyrup in a rotary evaporator. Th syrup was taken up with 200 ml of distilledwater, and the mixture was poured over a column containing 400 ml of acidion exchanger ("Lewatit" S 100 H+-form). The column was rinsed withdistilled water, and the product was eluted with 10% strength ammonia water.The runnings, rendered alkaline with ammonia, were collected and wereconcentrated to a syrup in a rotary evaporator. The syrup was crystallized,whilst warm, with a large amount of ethanol, and the suspension of crystalswas cooled and is filtered off under suction, and the crystalline product wasdried in a vacuum drying cabinet. Yield of 1,5-dideoxy-1,5-((2-hydroxyethyl)imino)-D-glucitol 14 g, 74% of theory. MP: 192°-193°C.
brand name
Glyset (Pharmacia & Upjohn);Diastabol.
Therapeutic Function
Glucosidase inhibitor
General Description
Miglitol is (2R,3R,4R,5S)-1-(2-hydroxyethyl)-2-(hydroxymethyl)-3,4,5-piperidinetriol, or N-hydroxyethyl-1-deoxynorjirimycin. The drug is available as 25-, 50-, and100-mg tablets (Glyset), for administration 25 to 100 mgt.i.d. with meals. In contrast to acarbose, miglitol is highlyabsorbed from a 25-mg oral dose, although absorption is reportedto be saturable, and accordingly less complete athigher doses. Binding to plasma proteins is minimal, andthe volume of distribution (0.18 L/kg, corresponding to12–13 L in a 70-kg adult) is characteristic of compoundsdistributed only to blood and extracellular fluids. Practicallyno systemic biotransformation of miglitol occurs in humans;essentially 100% of an orally administered dose is excretedintact in urine.
General Description
Miglitol, 1-(2-hydroxyethyl)-2-(hydroxymethyl)-[2R-(2α,3β ,4α,5β)]-piperidine (Glyset), a desoxynojirimycinderivative, is chemically known as 3,4,5-piperidinetriol. It is a white to pale yellow powder that issoluble in water, with a pKa of 5.9. In chemical structure,this agent is very similar to a sugar, with the heterocyclic nitrogenserving as an isosteric replacement of the sugar oxygen.This feature allows recognition by the -glucosidase asa substrate. This results in competitive inhibition of the enzymeand delays complex carbohydrate absorption from thegastrointestinal tract.
Mechanism of action
The mechanism of action of miglitol is very similar to that of acarbose; it has strong binding affinity to digestive enzymes and, as a result, prevents these enzymes from binding to complex carbohydrates thereby delaying glucose absorption and resulting in reduction in postprandial plasma levels. The difference to note is that miglitol is a competitive inhibitor of digestive enzymes as a substitute for glucose, whereas acarbose functions as a substitute for the starch and oligosaccharides. Miglitol shows inhibitory action toward almost all the digestive enzymes present in the brush border of small intestine with the following ranking order: sucrase > glucoamylase > isomaltase > lactase > trehalase, and some inhibitory activity toward a-amylase (Lembcke et al., 1985; Scott and Spencer, 2000).
Both acarbose and voglibose are not absorbed in the upper section of upper intestine. Miglitol, however, is almost completely absorbed in the small intestine (Scott and Spencer, 2000; Tan, 1997). The absorption of miglitol is dose dependent, with 25 mg of miglitol rapidly and completely absorbed. However, higher doses of up to 100 mg do not get fully absorbed, and 95% of miglitol is excreted out of the system via urine and feces almost unchanged. The amount excreted depends upon the systemic absorption, and therefore on the dose administered. With the lowest dose of 25 mg, almost 95% excretion is achieved, but with higher dosages this amount drops. The half-life of miglitol in healthy volunteers is 2–3 h for a less potent dose of 50 mg (Ahr et al., 1997; Campbell et al., 2000; Scott and Spencer, 2000).
Pharmacokinetics
Miglitol, an oral alpha-glucosidase inhibitor, is a desoxynojirimycin derivative that delays the digestion of ingested carbohydrates, thereby resulting in a smaller rise in blood glucose concentration following meals. As a consequence of plasma glucose reduction, miglitol reduce levels of glycosylated hemoglobin in patients with Type II (non-insulin-dependent) diabetes mellitus. Systemic nonenzymatic protein glycosylation, as reflected by levels of glycosylated hemoglobin, is a function of average blood glucose concentration over time. Because its mechanism of action is different, the effect of miglitol to enhance glycemic control is additive to that of sulfonylureas when used in combination. In addition, miglitol diminishes the insulinotropic and weight-increasing effects of sulfonylureas. Miglitol has minor inhibitory activity against lactase and consequently, at the recommended doses, would not be expected to induce lactose intolerance.
Clinical Use
One of the widely used a-glucosidase inhibitors for treatment of Type II diabetes is miglitol (C8H17NO5; IUPAC name (2R,3R,4R,5S)-1-(2-hydroxyethyl)- 2-(hydroxymethyl)piperidine-3,4,5-triol; molecular weight 207.2). Miglitol is a second-generation a-glucosidase inhibitor derived from 1-deoxynojirimycin, which is yet another a-glucosidase inhibitor and is structurally similar to glucose (Tan, 1997). It is a white to pale yellow powder and is soluble in water (Campbell et al., 2000). Miglitol was approved by the U.S. Food and Drug Administration (FDA) in 1996 as an additional therapy to diet alone therapy or diet plus sulfonylurea therapy in patients with Type II diabetes. Miglitol’s story begins with the successful attempts for identifying new compounds with inhibitory properties, which initially resulted in the discovery of nojirimycin, deoxynojirimycin, and their derivatives from various Bacillus and Streptomyces strains (Schmidt et al., 1979). During initial attempts, 1-deoxynojirimycin was successfully obtained (Schmidt et al., 1979); however, its N-hydroxyethyl analog (miglitol) later proved to possess better inhibitory activities. It is currently being manufactured by Bayer AG under the trade name of Glysetò in USA and as Diastabolò in Europe. Miglitol is considered to be a good choice for the therapy of patients who have the relative risk of developing hypoglycemia, weight gain, or lactic acidosis (Campbell et al., 2000). It is observed to have the same efficacy as acarbose at lesser dosages (50 and 100 mg tid). Miglitol therapy provides better reduction on fasting and postprandial plasma glucose levels in patients in comparison with sulfonylureas (Scott and Spencer, 2000), whereas voglibose, another a-glucosidase inhibitor, could achieve reduction only for postprandial glucose levels.
Synthesis
1-Deoxynojirimycin and its N-substituted analog N-hydroxyethyl-1- deoxynojirimycin (miglitol) are strong inhibitors of α-glucosidases and are used for the treatment of non-insulin-dependent diabetes (Campbell et al., 2000). The industrial production of these compounds follows a combined biotechnological- chemical synthesis, whereby G. oxydans plays a key-role in the oxidation of 1-aminosorbitol derivatives. As Gluconobacter cannot grow on aminopolyols, whole resting cells (grown on sorbitol) have to be used for this biotransformation process.
SYNTHESIS OF 1-DEOXYNOJIRIMYCIN AND MIGLITOL
Metabolism
Miglitol is not metabolized in man or in any animal species studied.
References
1) Lee et al. (2002), The effects of miglitol on glucagon-like peptide-1 secretion and appetite sensations in obese type 2 diabetics; Diabetes Obes. Metab., 4 329 2) Nomura et al. (2011), Effects of miglitol in platelet-derived microparticle, adiponectin, and selectin level in patients with type 2 diabetes mellitus; Int. J. Gen. Med., 4 539 3) Yokoyama et al. (2007), Miglitol increases the adiponectin level and decreases urinary albumin excretion in patients with type 2 diabetes mellitus; Metabolism, 56 1458
Properties of Miglitol
Melting point: | 114°C |
Boiling point: | 453.7±45.0 °C(Predicted) |
Density | 1.458±0.06 g/cm3(Predicted) |
storage temp. | Sealed in dry,Store in freezer, under -20°C |
solubility | Soluble in DMSO (up to 50 mg/ml with warming), or in Water (up to 60 mg/ml). |
form | solid |
pka | 5.9(at 25℃) |
color | White |
Water Solubility | Soluble |
Merck | 14,6187 |
Stability: | Stable for 2 years from date of purchase as supplied. Solutions in DMSO or distilled water may be stored at -20° for up to 1 month. |
CAS DataBase Reference | 72432-03-2(CAS DataBase Reference) |
Safety information for Miglitol
Signal word | Warning |
Pictogram(s) |
Exclamation Mark Irritant GHS07 |
GHS Hazard Statements |
H315:Skin corrosion/irritation H319:Serious eye damage/eye irritation |
Precautionary Statement Codes |
P305+P351+P338:IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continuerinsing. |
Computed Descriptors for Miglitol
InChIKey | IBAQFPQHRJAVAV-ULAWRXDQSA-N |
Miglitol manufacturer
Varanous Labs Pvt Ltd
New Products
(S)-3-Aminobutanenitrile hydrochloride 4-Methylphenylacetic acid N-Boc-D-alaninol N-BOC-D/L-ALANINOL Tert-butyl bis(2-chloroethyl)carbamate 3-Morpholino-1-(4-nitrophenyl)-5,6-dihydropyridin- 2(1H)-one Furan-2,5-Dicarboxylic Acid Tropic acid S-2-CHLORO PROPIONIC ACID ETHYL ISOCYANOACETATE 2-Bromo-1,3-Bis(Dimethylamino)Trimethinium Hexafluorophosphate 4-IODO BENZOIC ACID 3-NITRO-2-METHYL ANILINE 1-(2,4-DICHLOROPHENYL) ETHANAMINE (2-Hydroxyphenyl)acetonitrile 4-Bromopyrazole 5,6-Dimethoxyindanone 2-(Cyanocyclohexyl)acetic acid 4-methoxy-3,5-dinitropyridine 1-(4-(aminomethyl)benzyl)urea hydrochloride 2-aminopropyl benzoate hydrochloride diethyl 2-(2-((tertbutoxycarbonyl)amino) ethyl)malonate tert-butyl 4- (ureidomethyl)benzylcarbamate Ethyl-2-chloro((4-methoxyphenyl)hydrazono)acetateRelated products of tetrahydrofuran
You may like
-
72432-03-02 Miglitol 98%View Details
72432-03-02 -
72432-03-2 98%View Details
72432-03-2 -
Miglitol CAS 72432-03-2View Details
72432-03-2 -
Miglitol extrapure CAS 72432-03-2View Details
72432-03-2 -
Miglitol 98% (HPLC) CAS 72432-03-2View Details
72432-03-2 -
Miglitol CAS 72432-03-2View Details
72432-03-2 -
14714-50-2 (2-Hydroxyphenyl)acetonitrile 98+View Details
14714-50-2 -
118753-70-1 98+View Details
118753-70-1