Buspirone
- CAS NO.:36505-84-7
- Empirical Formula: C21H31N5O2
- Molecular Weight: 385.5
- MDL number: MFCD00243004
- EINECS: 253-072-2
- SAFETY DATA SHEET (SDS)
- Update Date: 2024-11-19 23:02:33
What is Buspirone?
Absorption
Buspirone is rapidly absorbed following oral administration. Bioavailability is low and variable (approximately 5%) due to extensive first pass metabolism. While absorption of buspirone is decreased with concomitant food intake, the first-pass metabolism of the drug is also decreased, resulting in an increased bioavailability as well as increased Cmax and AUC. Following oral administration of single oral doses of 20 mg, the Cmax ranged from 1 to 6 ng/mL and the Tmax ranged from 40 to 90 minutes.
Toxicity
The oral LD50 of buspirone is 196 mg/kg in rat, 655 mg/kg in mouse, 586 mg/kg in dog, and 356 mg/kg in monkey. The intraperitoneal LD50 is 136 mg/kg in rat and 146 mg/kg in mouse.
In clinical pharmacology trials, administration of buspirone at the dose of 375 mg/day resulted in symptoms of nausea, vomiting, dizziness, drowsiness, miosis, and gastric distress. Few cases of overdosage that have been reported usually resulted in complete recovery. In case of overdose, the use of general symptomatic and supportive treatment is recommended along with immediate gastric lavage and monitoring of respiration, pulse, and blood pressure.
The Uses of Buspirone
Buspirone is an extremely specific drug that could possibly represent a new chemical class of anxiolytics—azaspirones. As an anxiolytic, its activity is equal to that of benzodiazepines; however, it is devoid of anticonvulsant and muscle relaxant properties, which are characteristic of benzodiazepines.
The Uses of Buspirone
Tranquilizer (minor).
The Uses of Buspirone
5-Chloro Buspirone is an impurity of Buspirone Hydrochloride (B689850), a non-benzodiazepine anxiolytic and a 5-hydroxytryptamine (5-HT1) receptor agonist.
What are the applications of Application
Buspirone is 5-hydroxytryptamine (5-HT1) receptor agonist
Background
Buspirone is a novel anxiolytic agent with a unique structure and a pharmacological profile. Belonging to the azaspirodecanedione drug class, buspirone is a serotonin 5-HT1A receptor agonist that is not chemically or pharmacologically related to benzodiazepines, barbiturates, and other sedative/anxiolytic drugs. Unlike many drugs used to treat anxiety, buspirone does not exhibit anticonvulsant, sedative, hypnotic, and muscle-relaxant properties. Due to these characteristics, buspirone been termed 'anxioselective'. First synthesized in 1968 then patented in 1975, it is commonly marketed under the brand name Buspar?. Buspirone was first approved in 1986 by the FDA and has been used to treat anxiety disorders, such as generalized anxiety disorder (GAD), and relieve symptoms of anxiety. It has also been used as a second-line therapy for unipolar depression when the use of selective serotonin reuptake inhibitors (SSRIs) is deemed clinically inadequate or inappropriate. The potential use of buspirone in combination with melatonin in depression and cognitive impairment via promoting neurogenesis has also been investigated.
Indications
Indicated for the management of anxiety disorders or the short-term relief of the symptoms of anxiety.
Definition
ChEBI: An azaspiro compound that is 8-azaspiro[4.5]decane-7,9-dione substituted at the nitrogen atom by a 4-(piperazin-1-yl)butyl group which in turn is substituted by a pyrimidin-2-yl group at the N4 position.
brand name
Buspar (Bristol-Myers Squibb).
Biological Functions
Buspirone (BuSpar) is the first example of a class of anxiolytic agents that can relieve some symptoms of anxiety in doses that do not cause sedation. Buspirone is structurally unrelated to existing psychotropic drugs.
General Description
The initial compound in this series, buspirone (BuSpar), hasanxiolytic and antidepressant activities and is a partial5-HT1A agonist. Its anxiolytic activity is reportedly causedby its ability to diminish 5-HT release (via 5-HT1A agonism).High short-term synaptic levels of 5-HT are characteristic ofanxiety. Also, because it is a partial agonist, it can stimulatepostsynaptic receptors when 5-HT levels are low in thesynapse, as is the case in depression. Several other spironesare in development as anxiolytics and antidepressants.
Mechanism of action
Although buspirone has been shown to interact with a number of neurotransmitter systems in the brain, it appears that its clinically relevant effects are mediated through interactions at the serotonin (5-hydroxytryptamine, 5-HT) 5-HT1A receptor, where it acts as a partial agonist.
Pharmacokinetics
The clinical effect of buspirone in alleviating the symptoms of generalized anxiety disorders typically takes 2 to 4 weeks to achieve. The delayed onset of action of buspirone suggests that the therapeutic effectiveness in generalized anxiety may involved more than its molecular mechanism of action at the 5-HT1A receptors, or buspirone may induce adaptations of 5-HT1A receptors. Buspirone was not shown to alter the psychomotor or cognitive function in healthy volunteers, and the risk of developing sedation is relatively low compared to other anxiolytics, such as benzodiazepines. Unlike benzodiazepines and barbiturates used in anxiety disorders, buspirone is not associated with a risk for developing physical dependence or withdrawal, or any significant interaction with central nervous system depressants such as ethanol. This is due to the lack of effects on GABA receptors. Buspirone also does not exhibit any anticonvulsant or muscle-relaxing properties, but may interfere with arousal reactions due to its inhibitory action on the aactivity of noradrenergic locus coerulus neurons.
Despite its clinical effectiveness in generalized anxiety, buspirone demonstrated limited clinical effectiveness on panic disorders, severe anxiety, phobias, and obsessive compulsive disorders. The clinical effectiveness of the long-term use of buspirone, for more than 3 to 4 weeks, has not demonstrated in controlled trials but there were no observable significant adverse events in patients receiving buspirone for a year in a study of long-term use.
Pharmacology
Buspirone is as effective as the benzodiazepines in the treatment of general anxiety. However, the full anxiolytic effect of buspirone takes several weeks to develop, whereas the anxiolytic effect of the benzodiazepines is maximal after a few days of therapy. In therapeutic doses, buspirone has little or no sedative effect and lacks the muscle relaxant and anticonvulsant properties of the benzodiazepines. In addition, buspirone does not potentiate the central nervous system depression caused by sedative–hypnotic drugs or by alcohol, and it does not prevent the symptoms associated with benzodiazepine withdrawal.
Clinical Use
Buspirone is effective in general anxiety and in anxiety with depression.
Side Effects
Like the benzodiazepines, buspirone appears to be safe even when given in very high doses. The most common side effects are dizziness, light-headedness, and headache. Abuse, dependence, and withdrawal have not been reported, and buspirone administration does not produce any cross-tolerance to the benzodiazepines. Buspirone has been reported to increase blood pressure in patients taking monoamine oxidase inhibitors, and it may increase plasma levels of haloperidol if coadministered with that agent.
Synthesis
Buspirone, 8-[4-[4-(2-pyrimidyl)-1-piperazinyl]butyl]-8-azaspiro [4,5] decan-7,9-dione (5.2.6), is synthesized by the reaction of 1-(2-pyrimidyl)-4- (4-aminobutyl)piperazine (5.2.4) with 8-oxaspiro[4,5]decan-7,9-dione (5.2.5). In turn, 1- (2-pyrimidyl)-4-(4-aminobutyl)piperazine (5.2.4) is synthesized by the reaction of 1-(2-pyrimidyl)piperazine with 4-chlorobutyronitrile, giving 4-(2-pyrimidyl)-1-(3- cyanopropyl)piperazine (5.2.3), which is hydrogenated with Raney nickel into buspirone (5.2.4) [51¨C55].
Metabolism
Buspirone is well absorbed from the gastrointestinal tract, and peak blood levels are achieved in 1 to 1.5 hours; the drug is more than 95% bound to plasma proteins. Buspirone is extensively metabolized, with less than 1% of the parent drug excreted into the urine unchanged. At least one of the metabolic products of buspirone is biologically active. The parent drug has an elimination half-life of 4 to 6 hours.
Metabolism
Buspirone is extensively metabolized upon administration, where it primarily undergoes hepatic oxidation mediated by the CYP3A4 enzyme. Hydroxylated derivatives are produced, including a pharmacologically active metabolite 1-pyrimidinylpiperazine (1-PP). In animal studies, 1-PP possessed about one quarter of the pharmacological activity of buspirone.
Properties of Buspirone
Melting point: | 105-107 °C(Solv: ethyl acetate (141-78-6)) |
Boiling point: | 511.93°C (rough estimate) |
Density | 1.1527 (rough estimate) |
refractive index | 1.7600 (estimate) |
storage temp. | Sealed in dry,2-8°C |
pka | pKa 7.60±0.01(H2O t=25.0 I=0.1(NaCl)) (Uncertain) |
form | Solid |
color | White to off-white |
CAS DataBase Reference | 36505-84-7(CAS DataBase Reference) |
NIST Chemistry Reference | 8-Azaspiro[4.5]decane-7,9-dione, 8-[4-[4-(2-pyrimidinyl)-1-piperazinyl]butyl]-(36505-84-7) |
EPA Substance Registry System | 8-Azaspiro[4.5]decane-7,9-dione, 8-[4-[4-(2-pyrimidinyl)-1-piperazinyl]butyl]- (36505-84-7) |
Safety information for Buspirone
Computed Descriptors for Buspirone
Abamectin manufacturer
Solara Active Pharma Sciences Ltd
New Products
4-Aminotetrahydropyran-4-carbonitrile Hydrochloride (R)-3-Aminobutanenitrile Hydrochloride 4-AMINO-TETRAHYDRO-PYRAN-4-CARBOXYLIC ACID HCL 4-(Dimethylamino)tetrahydro-2H-pyran-4-carbonitrile 3-((Dimethylamino)methyl)-5-methylhexan-2-one oxalate 1,4-Dioxa-8-azaspiro[4.5]decane 5-Bromo-2-nitropyridine Nimesulide BP Aceclofenac IP/BP/EP Diclofenac Sodium IP/BP/EP/USP Mefenamic Acid IP/BP/EP/USP Ornidazole IP Diclofenac Potassium SODIUM AAS SOLUTION ZINC AAS SOLUTION BUFFER SOLUTION PH 10.0(BORATE) GOOCH CRUCIBLE SINTERED AQUANIL 5 BERYLLIUM AAS SOLUTION 2-Bromo-1-(bromomethyl)-3-chloro-5-nitrobenzene 2-Bromo-3-nitroaniline N-(3-Hydroxypropyl)-N-methylacetamide 3-Bromo-6-chloropyridazine 4-ethyl-3-nitrobenzoic acidRelated products of tetrahydrofuran
You may like
-
36505-84-7 Buspirone 98%View Details
36505-84-7 -
36505-84-7 98%View Details
36505-84-7 -
1823368-42-8 98%View Details
1823368-42-8 -
2-(3-(tert-butyl)phenoxy)-2-methylpropanoic acid 1307449-08-6 98%View Details
1307449-08-6 -
Ethyl 3-(furan-2-yl)-3-hydroxypropanoate 25408-95-1 98%View Details
25408-95-1 -
2-Chloro-5-fluoro-1-methoxy-3-methylbenzene 98%View Details
1805639-70-6 -
1784294-80-9 98%View Details
1784294-80-9 -
Lithium ClavulanateView Details
61177-44-4