Contact us: +91 9550333722 040 - 40102781
Structured search
India
Choose your country
Different countries will display different contents
Try our best to find the right business for you.
My chemicalbook

Welcome back!

HomeProduct name listAluminum oxide

Aluminum oxide

Synonym(s):Aluminum oxide;Alumina;Sapphire;Aluminum oxide nanowires;Alumina Chromatographic Grade

  • CAS NO.:1344-28-1
  • Empirical Formula: Al2O3
  • Molecular Weight: 101.96
  • MDL number: MFCD00003424
  • EINECS: 215-691-6
  • SAFETY DATA SHEET (SDS)
  • Update Date: 2024-12-18 14:15:32
Aluminum oxide Structural

What is Aluminum oxide?

Description

Aluminum(III) oxide is also called aluminum oxide. In mineral form it is called corundum and is referred to as alumina in conjunction with mining and aluminum industries. Alumina exists in hydrated forms as alumina monohydrate, Al2O3?H2O and alumina trihydrate Al2O3?3H2O. The geologic source of aluminum is the rock bauxite, which has a high percentage of hydrated aluminum oxide. The main minerals in bauxite are gibbsite (Al(OH)3), diaspore (AlO(OH)), and boehmite (AlO(OH).

Chemical properties

Aluminum is a combustible, light, silverywhite, soft, ductile, malleable, amphoteric metal.Vary according to the method of preparation. White powder, balls, or lumps of various mesh.Insoluble in water, dif- ficultly soluble in mineral acids and strong alkali. Noncombustible.

Chemical properties

Aluminum oxide occurs as a white crystalline powder. Aluminum oxide occurs as two crystalline forms: α-aluminum oxide is composed of colorless hexagonal crystals, and γ-aluminum oxide is composed of minute colorless cubic crystals that are transformed to the α-form at high temperatures.

Physical properties

Al2O3 Colorless hexagonal crystal; refractive index 1.768; density 3.965 g/cm3 (at 25°C); mp 2072°C; bp 2980°C; insoluble in water α-Al2O3 Colorless rhombic crystal; mp between 2005 to 2025°C ; density 4.022 g/m3 ; hardness 9Moh γ-Al2O3 white microscopic crystal Al2O3•H2O colorless rhombic crystal; refractive index 1.624; density 3.014 g/cm3 Al2O3•3H2O white monoclinic crystal; refractive index 1.577; density 2.420 g/cm3 All forms are insoluble in water.

Physical properties

White and translucent hard material used as abrasive for grinding. Excellent electric insulator and also wear resistant. Insoluble in water and in strong mineral acids, readily soluble in strong alkali hydroxides, attacked by HF or NH4HF2. Owing to its corrosion resistance, in inert atmosphere, in molten metals such as Mg, Ca, Sr, Ba, Mn, Sn, Pb, Ga, Bi, As, Sb, Hg, Mo, W, Co, Ni, Pd, Pt, and U it is used as crucible container for these liquid metals. Alumina is readily attacked in an inert atmosphere by molten metals such as Li, Na, Be, Al, Si, Ti, Zr, Nb, Ta, and Cu. Maximum service temperature 1950°C

Occurrence

Occurs in nature in abundance; the principal forms are bauxites and laterites. The mineral corundum is used to produce precious gems, such as ruby and sapphire. Activated aluminas are used extensively as adsorbents because of their affinity for water and other polar molecules; and as catalysts because of their large surface area and appropriate pore sturcture. As adsorbents, they are used for drying gases and liquids; and in adsorption chromatography. Catalytic properties may be attributed to the presence of surface active sites (primarily OH- , O2- , and Al3+ ions). Such catalytic applications include sulfur recovery from H2S (Clauss catalysis); dehydration of alcohols, isomerization of olefins; and as a catalyst support in petroleum refining.

Characteristics

Aluminum Oxide (Alumina) is the most widely used oxide, chiefly because it is plentiful, relatively low in cost, and equal to or better than most oxides in mechanical properties. Density can be varied over a wide range, as can purity — down to about 90% alumina — to meet specific application requirements. Alumina ceramics are the hardest, strongest, and stiffest of the oxides. They are also outstanding in electrical resistivity, dielectric strength, are resistant to a wide variety of chemicals, and are unaffected by air, water vapor, and sulfurous atmospheres. However, with a melting point of only 2039°C, they are relatively low in refractoriness, and at 1371°C retain only about 10% of room-temperature strength. In addition to its wide use as electrical insulators and its chemical and aerospace applications, the high hardness and close dimensional tolerance capability of alumina make this ceramic suitable for such abrasion-resistant parts as textile guides, pump plungers, chute linings, discharge orifices, dies, and bearings.

The Uses of Aluminum oxide

  • As adsorbent, desiccant, abrasive,thickening and anti-caking agent;
  • As filler for paints and varnishes;
  • In manufacture of alloys,refractories, ceramic materials, electrical insulators and resistors, dental cements, glass, steel, artificial gems; in coatings for metals, etc.;
  • As catalyst for organic reactions.
  • As an insoluble carrier for mineral pigment, and is frequently mixed into mineral powder makeup. Because of its abrasive texture, many use these crystals to exfoliate and resurface the skin-particularly with Microdermabrasion.
  • As a chromotagraphic matrix; originally called Brockmann aluminum oxide when used for this purpose.
  • The minerals corundum (hardness = 9) and Alundum (obtained by fusing bauxite in an electric furnace) are used as abrasives and polishes;
  • In manufacture of cosmetic products like blush, powder foundation, lipstick and facial cleanser.
use of Aluminum oxide uses of Aluminum oxide

The Uses of Aluminum oxide

Occurs in nature in abundance; the principal forms are bauxites and laterites. The mineral corundum is used to produce precious gems, such as ruby and sapphire. Activated aluminas are used extensively as adsorbents because of their affinity for water and other polar molecules; and as catalysts because of their large surface area and appropriate pore sturcture. As adsorbents, they are used for drying gases and liquids; and in adsorption chromatography. Catalytic properties may be attributed to the presence of surface active sites (primarily OH– , O2– , and Al3+ ions). Such catalytic applications include sulfur recovery from H2S (Clauss catalysis); dehydration of alcohols, isomerization of olefins; and as a catalyst support in petroleum refining.

The Uses of Aluminum oxide

Aluminum oxide is known as the mineral bauxite. Its main use is for the production of aluminum metal by electrolysis. It is also used in many other chemical reactions.

What are the applications of Application

Aluminum oxide, alpha-phase is essential in protein extraction as a component in the preparation of tissues

Background

Aluminum oxide has a chemical formula Al2O3. It is amphoteric in nature, and is used in various chemical, industrial and commercial applications. It is considered an indirect additive used in food contact substances by the FDA.

Preparation

Pure Aluminum oxide, needed to produce aluminum by the Hall process, is made by the Bayer process. The starting material is bauxite (Al2O3 • nH2O). The ore contains impurities, such as, SiO2, Fe2O3, TiO2, and Na2O. Most impurities are removed following treatment with caustic soda solution. Bauxite is dissolved in NaOH solution. Silica, iron oxides and other impurities are filtered out of the solution. CO2 is then bubbled through this solution. This precipitates are heated to remove water and produce Al2O3. These impurities are removed. Calcinations of bauxite produce Aluminum oxide of abrasive and refractory grades. Activated Aluminum oxide of amorphous type, as well as the transition Aluminum oxides of γ, η, χ, and ρ forms, are obtained from various aluminum hydroxides, such as, α- and β-trihydrates, α-monohydrate and Aluminum oxide gel. Such chemicals are also obtained from bauxite by the Bayer process.

Definition

The mineral corundum is natural aluminum oxide, and emery, ruby, and sapphire are impure crystalline varieties. The mixed mineral bauxite is a hydrated aluminum oxide.

Production Methods

The Bayer process begins by grinding the bauxite and mixing it with sodium hydroxide in a digester. The sodium hydroxide dissolves aluminum oxide components to produce aluminum hydroxide compounds. For gibbsite, the reaction is: Al(OH)3 + NaOH → Al(OH)4- + Na+. Insoluble impurities such as silicates, titanium oxides, and iron oxides are removed from the solution while sodium hydroxide is recovered and recycled. Reaction conditions are then modified so that aluminum trihydroxide (Al(OH)3) precipitates out. The reaction can be represented as the reverse of the previous reaction: Al(OH)4- + Na+ → Al(OH)3 + NaOH. Aluminum trihydroxide is calcined to drive off water to produce alumina:
Al(OH)3 Al2O3 + 3H2O.

Reactions

Aluminum oxide exhibits amphoteric behavior. It is soluble both in acids and bases. With acids, it produces their corresponding salts. It froms Al2(SO4)3, Al(NO3)3 and AlCl3 upon reactions with H2SO4, HNO3, and HCl, respectively. In acid medium, it exists as a solvated aluminum ion, in which water molecules are hexacoordinated to trivalent Al3+, as shown below:
Al2O3 + 6H3O+3H2O ——› 2[Al(H2O)6]3+
(Rollinson, C. L., 1978., Aluminum Compounds. In Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed. Vol 2, pp 188-97. NY,: Wiley Interscience)
Aluminum oxide forms hydroxide in aqueous alkaline solution. The reaction is slow. The products, aluminum hydroxides (hydrated aluminas), contain hexacoordinated aluminohydroxide anion:
Al2O3 + 2OH– + 7H2O → 2[Al(OH)4(H2O)2]–
In its dry state, Aluminum oxide exhibiting basicity reacts with silica, forming aluminum silicate
Al2O3 + 3SiO2 → Al2(SiO3)3
Similarly, with basic CaO or MgO aluminate salts are formed
MgO + Al2O3 → Mg(AlO2)2 CaO + Al2O3 → Ca(AlO2)2
It forms aluminum nitride, AlN when heated with coal in a stream of nitrogen; and aluminum borate, Al2O3 •B2O3 when heated with B2O3 at 1000°C.

General Description

White odorless crystalline powder. Water insoluble. Properties (both physical and chemical) vary according to the method of preparation; different methods give different crystalline modifications. The variety formed at very high temperature is quite inert chemically.

Air & Water Reactions

Insoluble in water.

Reactivity Profile

Aluminum oxide is chemically amphoteric (behaves as a weak acid in the presence of base and as a weak base in the presence of acid). May act catalytically. May cause the exothermic polymerization of ethylene oxide. May cause the vigorous polymerization of vinyl chloride [MCA SD-75, 1970]. The degree of subdivision of the Aluminum oxide may affect the vigor of such reactions.

Hazard

Toxic by inhalation of dust. Confirmed car- cinogen.

Health Hazard

The aluminas are considered to be nuisance dusts; their role in fibrogenic lung disease remains unclear.
Assessment of the toxicity of aluminas has been complicated by the chemical and physical variants of the compounds and inconsistencies in the nomenclature used to describe them.1 The group of compounds referred to as aluminas is composed of various structural forms of aluminum oxide, trihydroxide, and oxyhydroxide. 2 As these aluminas are heated, dehydration occurs, producing a variety of transitional forms; temperatures between 200 and 500°C result in low-temperature-range transitional aluminas characterized by increased catalytic activity and larger surface area.(Transitional aluminas include c, h, and g forms, which, taken together, were formerly termed “g.”)

Flammability and Explosibility

Not classified

Pharmaceutical Applications

Aluminum oxide is used mainly in tablet formulations.It is used for decoloring powders and is particularly widely used in antibiotic formulations. It is also used in suppositories, pessaries, and urethral inserts. Hydrated aluminum oxide is used in mordant dyeing to make lake pigments, in cosmetics, and therapeutically as an antacid.

Industrial uses

Fused aluminum oxide was the second synthetic abrasive to be developed. Synthetic aluminum oxide (alumina) is made as a white powder and can be somewhat harder than corundum (natural alumina) because of its purity. However, corundum has a Mohs hardness of approximately 9 (on a scale of 1 to 10. Alumina can be processed with different properties by slight alteration of the reactants in the manufacturing process. Several grain sizes of alumina are available, and alumina has largely replaced emery for several abrasive uses. Aluminum oxide is widely used to make bonded abrasives, coated abrasives, and air-propelled grit abrasives for dental applications.
Sintered aluminum oxide is used to make white stones, which are popular for adjusting dental enamel and finishing metal alloys, resin-based composites, and ceramic materials.
Pink and ruby variations of aluminum oxide abrasives are made by adding chromium compounds to the original melt. These variations are sold in a vitreous-bonded form as noncontaminating mounted stones for the preparation of metal– ceramic alloys to receive porcelain. Remnants of these abrasives and other debris should be removed from the surface of metals used for metal–ceramic bonding so as not to prevent optimal bonding of porcelain to the metal alloy. A review by Yamamoto (see Selected Reading) suggests that carbide burs are the most effective instruments for finishing this type of alloy because they do not contaminate the metal surface with entrapped abrasive particles.

Safety Profile

Suspected carcinogen with experimental neoplastigenic and tumorigenic data by implantation. Inhalation of finely divided particles may cause lung damage (Shaver's disease). Exothermic reaction above 200℃ with halocarbon vapors produces toxic HCl and phosgene. See also ALUMINUM COMPOUNDS

Safety

Aluminum oxide is generally regarded as relatively nontoxic and nonirritant when used as an excipient. Inhalation of finely divided particles may cause lung damage (Shaver's disease).
HUMAN HEALTH RISK ASSESSMENT FOR ALUMINIUM, ALUMINIUM OXIDE, AND ALUMINIUM HYDROXIDE

Potential Exposure

Most hazardous exposures to aluminum occur in smelting and refining processes. Aluminum is mostly produced by electrolysis of Al2O3 dissolved in molten cryolite (Na3AlF6). Aluminum is alloyed with copper, zinc, silicon, magnesium, manganese, and nickel; special additives may include chromium, lead, bismuth, titanium, zirconium, and vanadium. Aluminum and its alloys can be extruded or processed in rolling mills, wire works, forges, or foundries; and are used in the shipbuilding, electrical, building, aircraft, automobile, light engineering, and jewelry industries. Aluminum foil is widely used in packaging. Powdered aluminum is used in the paints and pyrotechnic industries. Alumina, emery, and corundum has been used for abrasives, refractories, and catalysts; and in the past in the first firing of china and pottery.

Metabolism

Not Available

storage

Aluminum oxide should be stored in a well-closed container in a cool, dry, place. It is very hygroscopic.

Shipping

UN1309 Aluminum powder, coated, Hazard Class: 4.1; Labels: 4.1-Flammable solid. UN1383 Pyrophoric metals, n.o.s. or Pyrophoric alloys, n.o.s., Hazard Class: 4.2; Labels: 4.2-Spontaneously combustible material, Technical Name Required. UN1396 Aluminum powder, uncoated, Hazard Class: 4.3; Labels: 4.3-Dangerous when wet material. NA9260 (North America) Aluminum, molten, Hazard class: 9; Labels: 9-Miscellaneous hazardous material.

Purification Methods

Stir the oxide with hot 2M HNO3, either on a steam bath for 12hours (changing the acid every hour) or three times for 30minutes, then wash it with hot distilled water until the washings have pH 4, and follow by three washings with hot MeOH. The product is dried at 270o [Angyal & Young J Am Chem Soc 81 5251 1959]. For the preparation of alumina for chromatography see Chapter 1. [For  ,  and  Al2O3 see Becher in Handbook of Preparative Inorganic Chemistry (Ed. Brauer) Academic Press Vol I p 822-823 1963 and Wagner in Handbook of Preparative Inorganic Chemistry (Ed. Brauer) Academic Press Vol II p 1662 1965.]

Incompatibilities

Aluminum oxide should be kept well away from water. It is incompatible with strong oxidizers and chlorinated rubber. Aluminum oxide also reacts with chlorine trifluoride, ethylene oxide, sodium nitrate, and vinyl acetate. Exothermic reactions above 2008℃ with halocarbon vapors produce toxic hydrogen chloride and phosgene fumes.

Waste Disposal

Consult with environmental regulatory agencies for guidance on acceptable disposalpractices. Generators of waste containing this contaminant (≥100 kg/mo) must conform with EPA regulations governing storage, transportation, treatment, and waste disposal of Aluminum Oxide-Disposal in a sanitary landfill. Mixing of industrial process wastes and municipal wastes at such sites is not encouraged however. Aluminum powder may be recovered and sold as scrap. Recycling and recovery is a viable option to disposal for aluminum metal and aluminum fluoride (A-57).

Regulatory Status

Included in the FDA Inactive Ingredients Database (oral tablets and topical sponge). Included in nonparenteral medicines licensed in the UK.

Properties of Aluminum oxide

Melting point: 2040 °C(lit.)
Boiling point: 2980°C
Density  3.97
vapor pressure  17 mm Hg ( 20 °C)
refractive index  1.765
Flash point: 2980°C
storage temp.  Sealed in dry,Room Temperature
solubility  Miscible with ethanol.
form  powder
color  White to pink
Specific Gravity 3.97
PH Range 3.5 - 4.5
Odor Odorless
PH 7.0±0.5 ( in H2O)
Water Solubility  INSOLUBLE
Crystal Structure Trigonal
Merck  14,356
Exposure limits ACGIH: TWA 1 mg/m3
OSHA: TWA 15 mg/m3; TWA 5 mg/m3
Dielectric constant 4.5(Ambient)
CAS DataBase Reference 1344-28-1(CAS DataBase Reference)
NIST Chemistry Reference Aluminum oxide(1344-28-1)
EPA Substance Registry System Alumina (1344-28-1)

Safety information for Aluminum oxide

Signal word Danger
Pictogram(s)
ghs
Flame
Flammables
GHS02
ghs
Exclamation Mark
Irritant
GHS07
GHS Hazard Statements H225:Flammable liquids
H319:Serious eye damage/eye irritation
H336:Specific target organ toxicity,single exposure; Narcotic effects
Precautionary Statement Codes P210:Keep away from heat/sparks/open flames/hot surfaces. — No smoking.
P261:Avoid breathing dust/fume/gas/mist/vapours/spray.
P305+P351+P338:IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continuerinsing.

Computed Descriptors for Aluminum oxide

InChIKey PNEYBMLMFCGWSK-UHFFFAOYSA-N

Aluminum oxide manufacturer

JSK Chemicals

2Y
Phone:+919879767970
Whatsapp: +91 9879767970
product: Aluminum oxide, basic 99%
Inquiry

Hindalco Industries Limited

1Y
Phone:+91-2266626666
Whatsapp: 91-22-66626666
product: Calcined Alumina 99%
Inquiry

Paradise Minerals

1Y
Phone:+919820635370
Whatsapp: +91-9820635370
product: Calcined Alumina 98%
Inquiry

ARRAKIS INDUSTRIES LLP

1Y
Phone:+91-7499586750
Whatsapp: +91- 7499586750
product: ALUMINIUM OXIDE ACTIVE NEUTRAL 1344-28-1 99%
Inquiry

SS Reagents and Chemicals

1Y
Phone:+91-7981238883
Whatsapp: +91-7981238883
product: 1344-28-1 99%
Inquiry

Imkemex

Maharashtra
product: Alumina
Inquiry

Anand Agencies

Maharashtra
Phone:91-9075014125
Whatsapp: 91-9075014125
product: Alumina
Inquiry

Vora Brothers

Mumbai
product: Alumina
Inquiry

Omkar Lab

Maharashtra
Phone:91-9326135973
Whatsapp: 91-9326135973
product: Alumina
Inquiry

Related products of tetrahydrofuran

You may like

Statement: All products displayed on this website are only used for non medical purposes such as industrial applications or scientific research, and cannot be used for clinical diagnosis or treatment of humans or animals. They are not medicinal or edible.