YTTRIUM
Synonym(s):;Yttrium;Yttrium element;Yttrium-89
- CAS NO.:7440-65-5
- Empirical Formula: Y
- Molecular Weight: 88.91
- MDL number: MFCD00011468
- EINECS: 231-174-8
- SAFETY DATA SHEET (SDS)
- Update Date: 2024-12-18 14:08:57
What is YTTRIUM?
Chemical properties
Dark-gray metal. Soluble in dilute acids and potassium hydroxide solution; decomposeswater. Known only in the tripositive state. Low neutron capture cross section.
Chemical properties
Yttrium is a silvery-white to dark-gray, or black solid or gray powder. Odorless. An element in Group III-B of the Periodic Table. It is very similar to the rare earth metals.
Physical properties
Yttrium is always found with the rare-earth elements, and in some ways it resembles them.Although it is sometimes classified as a rare-earth element, it is listed in the periodic table asthe first element in the second row (period 5) of the transition metals. It is thus also classifiedas the lightest in atomic weight of all the rare-earths. (Note: Yttrium is located in the periodictable just above the element lanthanum (group 3), which begins the lanthanide rare-earthseries.Yttrium dissolves in weak acids and also dissolves in strong alkalis such as potassiumhydroxide. It will also decompose in water.Yttrium’s melting point is 1,522°C, its boiling point is 5,338°C, and its density is 4.469g/cm3.
Isotopes
There are 50 isotopes of Yttrium. Only one is stable (Y-89), and it constitutes100% of the element’s natural existence on Earth. The other isotopes range from Y-77to Y-108 and are all produced artificially in nuclear reactions. The radioactive isotopeshave half-lives ranging from 105 nanoseconds to 106.65 days.
Origin of Name
Yttrium was originally found with other elements in a mineral called gadolinite that was discovered in a mine near the Swedish the town of Ytterby.
Occurrence
Yttrium is the 27th most abundant element found on Earth, so it is not exactly correct tothink of it as “rare”—rather just difficult to find and extract from all the other similar elementsfound in its minerals.The mineral gadolinite that was discovered in a quarry near Ytterby, Sweden, was analyzedas (Ce,La,Nd,Y)2FeBe2Si2O10. Today most yttrium is recovered from the ores of the mineralmonazite, which is a dark, sandy mixture of elements [(Ce,La,Th,Nd,Y)PO4] and containsabout 50% rare-earths, including about 3% yttrium. The yttrium is separated from the otherrare-earths first by magnetic and flotation processes, which are followed by an iron-exchangedisplacement process. Yttrium’s ions are combined with fluorine ions that are then reduced byusing calcium metal that yields yttrium metal (3Ca + 2YF3 → 2Y + 3CaF2). This reductionprocess produces high-purity yttrium that can be formed into ingots, crystals, sponge, powder,and wires.
History
Yttria, which is an earth containing yttrium, was discovered by Gadolin in 1794. Ytterby is the site of a quarry which yielded many unusually minerals containing rare earths and other elements. This small town, near Stockholm, bears the honor of giving names to erbium, terbium, and ytterbium as well as yttrium. In 1843 Mosander showed that yttria could be resolved into the oxides (or earths) of three elements. The name yttria was reserved for the most basic one; the others were named erbia and terbia. Yttrium occurs in nearly all of the rare-earth minerals. Analysis of lunar rock samples obtained during the Apollo missions show a relatively high yttrium content. It is recovered commercially from monazite sand, which contains about 3%, and from bastnasite, which contains about 0.2%. Wohler obtained the impure element in 1828 by reduction of the anhydrous chloride with potassium. The metal is now produced commercially by reduction of the fluoride with calcium metal. It can also be prepared by other techniques. Yttrium has a silver-metallic luster and is relatively stable in air. Turnings of the metal, however, ignite in air if their temperature exceeds 400°C, and finely divided yttrium is very unstable in air. Yttrium oxide is one of the most important compounds of yttrium and accounts for the largest use. It is widely used in making YVO4 europium, and Y2O3 europium phosphors to give the red color in color television tubes. Many hundreds of thousands of pounds are now used in this application. Yttrium oxide also is used to produce yttrium iron garnets, which are very effective microwave filters. Yttrium iron, aluminum, and gadolinium garnets, with formulas such as Y3Fe5O12 and Y3Al5O12, have interesting magnetic properties. Yttrium iron garnet is also exceptionally efficient as both a transmitter and transducer of acoustic energy. Yttrium aluminum garnet, with a hardness of 8.5, is also finding use as a gemstone (simulated diamond). Small amounts of yttrium (0.1 to 0.2%) can be used to reduce the grain size in chromium, molybdenum, zirconium, and titanium, and to increase strength of aluminum and magnesium alloys. Alloys with other useful properties can be obtained by using yttrium as an additive. The metal can be used as a deoxidizer for vanadium and other nonferrous metals. The metal has a low cross section for nuclear capture. Y, one of the isotopes of yttrium, exists in equilibrium with its parent Sr, a product of atomic explosions. Yttrium has been considered for use as a nodulizer for producing nodular cast iron, in which the graphite forms compact nodules instead of the usual flakes. Such iron has increased ductility. Yttrium is also finding application in laser systems and as a catalyst for ethylene polymerization. It also has potential use in ceramic and glass formulas, as the oxide has a high melting point and imparts shock resistance and low expansion characteristics to glass. Natural yttrium contains but one isotope, Y. Forty-three other unstable isotopes and isomers have been characterized. Yttrium metal of 99.9% purity is commercially available at a cost of about $5/g.
Characteristics
Yttrium (39Y) is often confused with another element of the lanthanide series of rareEarths—Ytterbium (70Yb). Also confusing is the fact that the rare-earth elements terbiumand erbium were found in the same minerals in the same quarry in Sweden. Yttrium rankssecond in abundance of all 16 rare-earth, and Ytterbium ranks 10th. Yttrium is a dark silverygray lightweight metal that, in the form of powder or shavings, will ignite spontaneously.Therefore, it is considered a moderately active rare-earth metal.
The Uses of YTTRIUM
Although yttrium metal by itself is not very useful, it has many unusual applicationswhen combined as an alloy or as a compound with other elements. For example, whencombined with iron, it is known as garnet (Y3Fe5O12), which is used as a “filter” in microwave communication systems. When garnets are made with aluminum instead of iron,they form semiprecious garnet gemstones (Y3Al5O12) that resemble diamonds. Aluminumgarnets are referred to as “YAG” solid-state lasers because they are capable of intensifyingand strengthening a single frequency of light energy that is focused through a crystal ofgarnet. This produces a very powerful narrow band of light waves of a single color (microwave frequency). YAG-type lasers have found uses in the medical industry and as a cuttingtool for metals.When combined with oxygen and europium, yttrium produces the red phosphor used asa coating in color television screens to produce the bright red color. Yttrium is also used asan alloy metal and as a high-temperature coating on iron and steel alloys. It is used as a substance to deoxidize (remove the oxygen) during the production of nonferrous metals such asvanadium. Yttrium has the ability to “capture” neutrons, making it useful in the nuclear powerindustry. It is also used in the production of several types of semiconductors.
The Uses of YTTRIUM
Yttrium is mixed with rare earths as phosphors for color television receivers; oxide for mantles in gas and acetylene lights; in ceramics; in superconductors.
The Uses of YTTRIUM
Yttrium, plasma standard solution is used as a standard solution in analytical chemistry and atomic absorption spectroscopy. It is also used as a single-element standard solution for plasma emission spectrometry.
Definition
A silvery metallic element belonging to the second transition series. It is found in almost every lanthanoid mineral, particularly monazite. Yttrium is used in various alloys, in yttrium–aluminum garnets used in the electronics industry and as gemstones, as a catalyst, and in superconductors. A mixture of yttrium and europium oxides is widely used as the red phosphor on television screens. Symbol: Y; m.p. 1522°C; b.p. 3338°C; r.d. 4.469 (20°C); p.n. 39; r.a.m. 88.90585.
Definition
yttrium: Symbol Y. A silvery-greymetallic element belonging to group3 (formerly IIIA) of the periodic table;a.n. 39; r.a.m. 88.905; r.d. 4.469(20°C); m.p. 1522°C; b.p. 3338°C. Itoccurs in uranium ores and in lanthanoidores, from which it can beextracted by an ion exchangeprocess. The natural isotope is yttrium–89, and there are 14 known artificialisotopes. The metal is used insuperconducting alloys and in alloysfor strong permanent magnets (inboth cases, with cobalt). The oxide(Y2O3) is used in colour-televisionphosphors, neodymium-doped lasers,and microwave components. Chemicallyit resembles the lanthanoids,forming ionic compounds containingY3+ ions. The metal is stable in airbelow 400°C. It was discovered in1828 by Friedrich W?hler.
General Description
Soft silvery-white metal in bulk. Dark-gray to black odorless powder. Mp: 1509°C; bp 2927°C. Density: 4.47 g cm-3 at 20°C. May irritate the respiratory tract if inhaled as a powder. May irritate the digestive tract if swallowed. Vapors may cause dizziness or suffocation.
Reactivity Profile
YTTRIUM in bulk is stable in air due to the formation of oxide films. Powder or dust is light-sensitive and air-sensitive and flammable in the air and (Hazardous Chemicals Desk Reference, p. 861(1987)). Reacts with water to form gaseous hydrogen (H2). Reacts with strong oxidizing agents, strong acids, strong bases, and halogens. The products of these reactions are irritating and toxic.
Hazard
As a powder or in fine particles, yttrium is flammable and may spontaneously ignite inmoist air. Some of its compounds, particularly those used in the semiconductor and electricalindustries, are very toxic if inhaled or ingested and should only be used under proper conditions.
Health Hazard
Yttrium compounds cause pulmonary irritation in animals. No effects in humans have been reported.
Flammability and Explosibility
Flammable
Safety Profile
It may have an anticoagulant effect on the blood. Flammable in the form of dust when reacted with air, halogens.
Potential Exposure
Yttrium is used in iron and other alloys, in incandescent gas mantles, and as a deoxidizer for metals. Yttrium metal has a low cross section for neutron capture and is very stable at high temperatures. Further, it is very inert toward liquid uranium and many liquid uranium alloys. Thus, it may well have applications in nuclear power generation. The metal is usually prepared by reduction of the halide with an active metal, such as calcium. To identify and analyze this element, X-ray fluorescence spectroscopy is commonly employed.
Shipping
UN3089 Metal powders, flammable, n.o.s., Hazard Class: 4.1; Labels: 4.1-Flammable solid. UN3178 Flammable solids, inorganic, n.o.s., Hazard Class: 4.1; Labels: 4.1-Flammable solid.
Incompatibilities
Flammable in the form of dust; may form explosive mixture with air. A strong reducing agent; reacts violently with oxidizers (chlorates, nitrates, peroxides, permanganates, perchlorates, chlorine, bromine, fluorine, etc.); contact may cause fires or explosions. Keep away from alkaline materials, strong bases, strong acids, oxoacids, epoxides, halogens. Yttrium nitrate is a combustible material.
Waste Disposal
Recovery is indicated wherever possible. Specifically, processes are available for yttrium oxysulfide recovery from color television tube manufacture.
Properties of YTTRIUM
Melting point: | 1522 °C (lit.) |
Boiling point: | 3338 °C (lit.) |
Density | 4.469 g/mL at 25 °C (lit.) |
Flash point: | 470℃ |
storage temp. | Flammables area |
solubility | reacts with H2O; soluble in dilute acid solutions |
form | powder |
color | Gray |
Specific Gravity | 4.47 |
Resistivity | 57 μΩ-cm, 20°C |
Water Solubility | Insoluble in water |
Sensitive | air sensitive, moisture sensitive |
Merck | 13,10161 |
Exposure limits | ACGIH: TWA 2 ppm; STEL 4 ppm OSHA: TWA 2 ppm(5 mg/m3) NIOSH: IDLH 25 ppm; TWA 2 ppm(5 mg/m3); STEL 4 ppm(10 mg/m3) |
Stability: | Stable. |
CAS DataBase Reference | 7440-65-5(CAS DataBase Reference) |
EPA Substance Registry System | Yttrium (7440-65-5) |
Safety information for YTTRIUM
Signal word | Warning |
Pictogram(s) |
Flame Flammables GHS02 |
GHS Hazard Statements |
H228:Flammable solids |
Precautionary Statement Codes |
P210:Keep away from heat/sparks/open flames/hot surfaces. — No smoking. P240:Ground/bond container and receiving equipment. P241:Use explosion-proof electrical/ventilating/lighting/…/equipment. P280:Wear protective gloves/protective clothing/eye protection/face protection. P370+P378:In case of fire: Use … for extinction. |
Computed Descriptors for YTTRIUM
New Products
(S)-3-Aminobutanenitrile hydrochloride 4-Methylphenylacetic acid N-Boc-D-alaninol N-BOC-D/L-ALANINOL Tert-butyl bis(2-chloroethyl)carbamate 3-Morpholino-1-(4-nitrophenyl)-5,6-dihydropyridin- 2(1H)-one Furan-2,5-Dicarboxylic Acid Tropic acid 1-Bromo-3,5-Di-Tert-Butylbenzene S-2-CHLORO PROPIONIC ACID ETHYL ISOCYANOACETATE 2-Bromo-1,3-Bis(Dimethylamino)Trimethinium Hexafluorophosphate 4-IODO BENZOIC ACID 3-NITRO-2-METHYL ANILINE 1-(2,4-DICHLOROPHENYL) ETHANAMINE (2-Hydroxyphenyl)acetonitrile 4-Bromopyrazole 2-(Cyanocyclohexyl)acetic acid 4-methoxy-3,5-dinitropyridine 1-(4-(aminomethyl)benzyl)urea hydrochloride 2-aminopropyl benzoate hydrochloride diethyl 2-(2-((tertbutoxycarbonyl)amino) ethyl)malonate tert-butyl 4- (ureidomethyl)benzylcarbamate Ethyl-2-chloro((4-methoxyphenyl)hydrazono)acetateRelated products of tetrahydrofuran
You may like
-
Yttrium foil, 0.127mm (0.005 in.) thick CAS 7440-65-5View Details
7440-65-5 -
Yttrium rod, 6.35mm (0.25 in.) dia. CAS 7440-65-5View Details
7440-65-5 -
Yttrium rod, 6.35mm (0.25 in.) dia. CAS 7440-65-5View Details
7440-65-5 -
Yttrium rod, 6.35mm (0.25 in.) dia. CAS 7440-65-5View Details
7440-65-5 -
Yttrium rod, 6.35mm (0.25 in.) dia. CAS 7440-65-5View Details
7440-65-5 -
Yttrium rod, 12.7mm (0.5 in.) dia. CAS 7440-65-5View Details
7440-65-5 -
Yttrium rod, 12.7mm (0.5 in.) dia. CAS 7440-65-5View Details
7440-65-5 -
Yttrium ICP standard CASView Details