Contact us: +91 9550333722 040 - 40102781
Structured search
India
Choose your country
Different countries will display different contents
Try our best to find the right business for you.
My chemicalbook

Welcome back!

HomeProduct name listTepotinib

Tepotinib

Tepotinib Structural

What is Tepotinib?

Absorption

The absolute bioavailability of tepotinib following oral administration is approximately 72%. At the recommended dosage of 450mg once daily, the median Tmax is 8 hours and the mean steady-state Cmax and AUC0-24h were 1,291 ng/mL and 27,438 ng·h/mL, respectively.
Co-administration with a high-fat, high-calorie meal increases the AUC and Cmax of tepotinib by approximately 1.6-fold and 2-fold, respectively.

Toxicity

There are no data regarding overdosage of tepotinib. Symptoms of overdose are likely to be consistent with tepotinib's adverse effect profile and may therefore involve significant gastrointestinal symptoms, musculoskeletal pain, and laboratory abnormalities. Treatment of overdose should involve symptomatic and supportive measures. In the event of overdose, dialysis is unlikely to be of benefit given the high degree of plasma protein binding exhibited by tepotinib.

Description

Tepotinib is a highly selective inhibitor against MET. In xenograft models, acquired resistance to EGFR TKIs via secondary EGFR T790 M mutations can be overcome with tepotinib treatment.

The Uses of Tepotinib

EMD 1214063 is a novel ATP-comptetitive inhibitor of the MET hepatocyte growth factor receptor and a novel kinase inhibitor and a therapeutic agent for neuroblastoma. Potent c-MET inhibitor.

Indications

Tepotinib is indicated for the treatment of adult patients with metastatic non-small cell lung cancer (NSCLC) who have mesenchymal-epithelial transition (MET) exon 14 skipping alterations.

Background

Tepotinib is a MET tyrosine kinase inhibitor intended to treat a variety of MET-overexpressing solid tumors. It was originally developed in partnership between EMD Serono and the University of Texas M.D. Anderson Cancer Center in 2009 and has since been investigated in the treatment of neuroblastoma, gastric cancers, non-small cell lung cancer, and hepatocellular carcinoma. MET is a desirable target in the treatment of certain solid tumors as it appears to play a critical role, both directly and indirectly, in the growth and proliferation of tumors in which it is overexpressed and/or mutated.
Tepotinib was first approved in Japan in March 2020 for the treatment of non-small cell lung cancers (NSCLC) with MET alterations, and was subsequently granted accelerated approval by the US FDA in February 2021, under the brand name Tepmetko, for the treatment of adult patients with metastatic NSCLC and MET exon 14 skipping alterations. It is the first oral MET-targeted tyrosine kinase inhibitor to allow for once-daily dosing, an advantage that may aid in easing the pill burden often associated with chemotherapeutic regimens. In February 2022, tepotinib was approved for use in Europe.

brand name

Tepmetko

General Description

Class: receptor tyrosine kinase; Treatment: NSCLC with METex14; Other name: EMD-1214063; Oral bioavailability = 72%; Elimination half-life = 32 h; Protein binding = 94%

Mechanism of action

Tepotinib is a Kinase Inhibitor. The mechanism of action of tepotinib is as a Mesenchymal Epithelial Transition Inhibitor, and P-Glycoprotein Inhibitor.

Pharmacokinetics

Tepotinib is a highly-selective inhibitor of MET kinase activity, with an average IC50 of approximately 1.7 nmol/L. It has a moderate duration of action necessitating once-daily administration.
Tepotinib has been associated with the development of interstitial lung disease (ILD)/pneumonitis, which can sometimes be fatal. Patients should be monitored closely for signs of new or worsening respiratory symptoms (e.g. dyspnea, cough), and treatment with tepotinib should be immediately withheld if ILD/pneumonitis is suspected. If no other potential causes of ILD/pneumonitis are identified, therapy with tepotinib should be suspended indefinitely.

Pharmacology

Tepotinib is a highly-selective inhibitor of MET kinase activity, with an average IC50 of approximately 1.7 nmol/L. It has a moderate duration of action necessitating once-daily administration.  Tepotinib has been associated with the development of interstitial lung disease (ILD)/pneumonitis, which can sometimes be fatal. Patients should be monitored closely for signs of new or worsening respiratory symptoms (e.g. dyspnea, cough), and treatment with tepotinib should be immediately withheld if ILD/pneumonitis is suspected. If no other potential causes of ILD/pneumonitis are identified, therapy with tepotinib should be suspended indefinitely.

Clinical Use

Tepotinib is currently being evaluated in combination with EGFR TKI gefitinib and also a separate trial in NSCLC patients with MET exon 14 skipping mutation and MET amplification.

Side Effects

  • anxiety
  • chest pain or tightness
  • difficult or labored breathing
  • dizziness or lightheadedness
  • fast heartbeat
  • fever or chills
  • general feeling of discomfort or illness
  • muscle or bone pain

Synthesis

The synthesis of Tepotinib is as follows:
Acetonitrile (700 ml) was added to the reaction vessel, and the compound represented by formula 7a (37.63 g, 0.1 mol), the compound represented by formula 8 (23.66 g, 0.12 mol), and potassium carbonate (34.55 g, 0.25 mol) were added under stirring.and tetrabutylammonium bromide (1.93g, 0.006mol), the reaction system was stirred and heated to reflux, and the reaction was stirred at reflux for 12h. After the reaction was completed, the temperature was cooled to room temperature, the reaction solution was concentrated under reduced pressure to dryness, and ethanol (360ml) was added. ), stir to dissolve, slowly add 1.5 mol/l hydrochloric acid aqueous solution dropwise, adjust the pH value to 1-2, cool down to 5-7 °C, stir and crystallize for 6 h, filter, and vacuum dry the solid at 45 °C for 6 h to obtain formula 1. The compound (44.42 g) was shown in a yield of 81.2% and a purity of 99.7% by HPLC.
synthesis of Tepotinib.png

Drug interactions

Tepotinib is indicated for the treatment of adult patients with metastatic non-small cell lung cancer (NSCLC) who have mesenchymal-epithelial transition (_MET_) exon 14 skipping alterations.

Metabolism

Tepotinib is metabolized primarily by CYP3A4 and CYP2C8, with some apparent contribution by unspecified UGT enzymes. The metabolite M506 is the major circulating metabolite, comprising approximately 40.4% of observed drug material in plasma, while the M668 glucuronide metabolite has been observed in plasma at much lower quantities (~4% of an orally administered dose). A total of 10 phase I and phase II metabolites have been detected following tepotinib administration, most of which are excreted in the feces.

Metabolism

Tepotinib is metabolized primarily by CYP3A4 and CYP2C8, with some apparent contribution by unspecified UGT enzymes. The metabolite M506 is the major circulating metabolite, comprising approximately 40.4% of observed drug material in plasma, while the M668 glucuronide metabolite has been observed in plasma at much lower quantities (~4% of an orally administered dose). A total of 10 phase I and phase II metabolites have been detected following tepotinib administration, most of which are excreted in the feces.

Properties of Tepotinib

Boiling point: 626.5±65.0 °C(Predicted)
Density  1.25
storage temp.  Store at -20°C
form  Solid
pka 8.93±0.10(Predicted)
Water Solubility  ≥ 4.93 mg/mL in DMSO, <2.52 mg/mL in EtOH, <2.56 mg/mL in Water

Safety information for Tepotinib

Signal word Warning
Pictogram(s)
ghs
Exclamation Mark
Irritant
GHS07
GHS Hazard Statements H302:Acute toxicity,oral
Precautionary Statement Codes P280:Wear protective gloves/protective clothing/eye protection/face protection.
P305+P351+P338:IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continuerinsing.

Computed Descriptors for Tepotinib

Related products of tetrahydrofuran

You may like

Statement: All products displayed on this website are only used for non medical purposes such as industrial applications or scientific research, and cannot be used for clinical diagnosis or treatment of humans or animals. They are not medicinal or edible.