Amphotericin B
Synonym(s):Amphotericin;Amphotericin B;Amphotericin B from Streptomyces sp.;Fungizone
- CAS NO.:1397-89-3
- Empirical Formula: C47H73NO17
- Molecular Weight: 924.08
- MDL number: MFCD00877763
- EINECS: 215-742-2
- SAFETY DATA SHEET (SDS)
- Update Date: 2024-11-04 20:04:50
What is Amphotericin B?
Absorption
Bioavailability is 100% for intravenous infusion.
Toxicity
Oral, rat: LD50 = >5 gm/kg. Amphotericin B overdoses can result in cardio-respiratory arrest.
Description
Amphotericin B (1397-89-3) is a powerful antimycotic, effective against a wide variety of fungi, including yeast, via two mechanisms: forming pores in the plasma membrane, leading to leakage and death1, and causing oxidative stress2. Other mechanisms have more recently been proposed, including formation of intracellular amphotericin B-containing vesicular bodies that target vacuoles.3 Amphotericin B is also effective against some parasites, such as Leishmania spp.4 Because of its potency and broad-spectrum activity, it is a common additive used to maintain sterility in cell culture and viral transport media.
Description
Amphotericin B is an antifungal antibiotic produced by the bacterium Streptomyces nodosus. In 1955, it was isolated from soil collected near the Orinoco River of Venezuela by researchers at the Squibb Institute for Medical Research, now part of Bristol-Meyers Squibb (New Brunswick, NJ).
Carl P. Schaffner at Rutgers University (New Brunswick) and coauthors elucidated the complete structure and absolute configuration of amphotericin B in 1965. The molecule’s total synthesis was completed by K. C. Nicolaou, then at the University of Pennsylvania (Philadelphia) and co-workers in 1987. Until the 1980s, the compound was the only effective medication against systemic fungal diseases.
Now amphotericin B could have a new, important medical use. Martin D. Burke and colleagues at the University of Illinois at Urbana–Champaign showed that, when administered to cultured epithelial cells taken from the lung airway linings of cystic fibrosis patients, the drug created new ion channels to replace those blocked by mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) protein. This procedure increased the pH and lowered the viscosity of the liquid secreted on the lining surfaces, resulting in improved bicarbonate ion flow.
The authors, together with cystic fibrosis researcher Michael J. Welsh at the University of Iowa (Iowa City), then treated pigs that lacked the CFTR protein with amphotericin B. Again, the pH of the airway surface liquid increased, showing that amphotericin B could be effective against cystic fibrosis when the CFTR protein is mutated or even absent. Clinical trials will follow.
Chemical properties
Crystalline Yellow Solid
Originator
Fungizone,Squibb,US,1958
The Uses of Amphotericin B
Amphotericin B is heptaene polyene antifungal originally discovered as a metabolite of Streptomyces nodosus in 1956. Amphotericin B acts by binding sterols in the cell membrane leading to the formation of transmembrane channels and subsequent ion leakage. Amphotericin B is poorly water soluble so has been developed for therapeutic use as a complex with desoxylate or in liposomes to improve bioavailability. Amphotericin B is widely used as a research reagent in diverse applications with over 15,000 literature citations.
The Uses of Amphotericin B
Polypeptide antibiotic active against gram positive bacteria. Antifungal.
The Uses of Amphotericin B
Amphotericin B (Funizone) is an antifungal macrolide antibiotic produced by Streptomyces nodosus that has been used as an alternative, albeit more toxic, drug to the antimonials. See also Amebiasis (Amebic Dysentery) . It acts as a leishmanicide against the visceral and mucocutaneous forms of the disease. To overcome its potentially severe nephrotoxicity, the drug must be administered over an extended period of time.
Background
Amphotericin B shows a high order of in vitro activity against many species of fungi. Histoplasma capsulatum, Coccidioides immitis, Candida species, Blastomyces dermatitidis, Rhodotorula, Cryptococcus neoformans, Sporothrix schenckii, Mucor mucedo, and Aspergillus fumigatus are all inhibited by concentrations of amphotericin B ranging from 0.03 to 1.0 mcg/mL in vitro. While Candida albicans is generally quite susceptible to amphotericin B, non-albicans species may be less susceptible. Pseudallescheria boydii and Fusarium sp. are often resistant to amphotericin B. The antibiotic is without effect on bacteria, rickettsiae, and viruses.
What are the applications of Application
Amphotericin B trihydrate is an antifungal and antibiotic
What are the applications of Application
Amphotericin B is an antifungal and useful cell culture antibiotic
Indications
Used to treat potentially life threatening fungal infections.
Definition
ChEBI: Amphotericin B is a macrolide antibiotic used to treat potentially life-threatening fungal infections.
Indications
Amphotericin B (Fungizone), a polyene antifungal drug produced by the actinomycete Streptomyces nodosus, consists of a large ring structure with both hydrophilic and lipophilic regions. Polyene antifungal drugs bind to the fungal cell membrane component ergosterol, leading to increased fungal cell membrane permeability and the loss of intracellular constituents. Amphotericin has a lesser affinity for the mammalian cell membrane component cholesterol, but this interaction does account for most adverse toxic effects associated with this drug.
Manufacturing Process
The process for producing amphotericin comprises cultivating a strain of Streptomyces nodosus in an aqueous nutrient medium comprising an assimilable, fermentable carbohydrate and an assimilable organic nitrogen source, under submerged aerobic conditions, until substantial antifungal activity is imparted to the medium and recovering amphotericin from the medium.
brand name
Amphotec (Three Rivers); Fungizone (BristolMyers Squibb).
Therapeutic Function
Antifungal
Antimicrobial activity
The spectrum includes most fungi that cause human disease: A. fumigatus, Blast. dermatitidis, Candida spp., Coccidioides spp., Cryptococcus spp., Hist. capsulatum, Paracocc. brasiliensis and Spor. schenckii. Dermatophytes, Fusarium spp. and some other Aspergillus spp., including A. terreus and A. flavus, may be less susceptible, while Scedosporium spp., Trichosporon asahii (formerly T. beigelii) and some fungi that cause mucormycosis are resistant.
Acquired resistance
Resistant strains of C. tropicalis, C. lusitaniae, C. krusei and C. guilliermondii, with alterations in the cell membrane, including reduced amounts of ergosterol, have occasionally been isolated after prolonged treatment, particularly of infections in partially protected sites, such as the vegetations of endocarditis. Significant resistance in yeasts, including C. albicans and C. glabrata, has been reported in isolates from cancer patients with prolonged neutropenia. In some cases resistant strains have caused disseminated infection. There are a few reports of amphotericin-resistant strains of Cryp. neoformans recovered from AIDS patients with relapsed meningitis.
Hazard
May have undesirable side effects.
Pharmaceutical Applications
A fermentation product of Streptomyces nodosus available for intravenous infusion or oral administration. The traditional micellar suspension formulation is often associated with serious toxic effects, in particular renal damage, and this has stimulated efforts to develop chemical modifications and new formulations.
Biochem/physiol Actions
Amphotericin B is used for primary treatment of acute invasive fungal infections, such as aspergillosis.
Pharmacokinetics
Amphotericin B shows a high order of in vitro activity against many species of fungi. Histoplasma capsulatum, Coccidioides immitis, Candida species, Blastomyces dermatitidis, Rhodotorula, Cryptococcus neoformans, Sporothrix schenckii, Mucor mucedo, and Aspergillus fumigatus are all inhibited by concentrations of amphotericin B ranging from 0.03 to 1.0 mcg/mL in vitro. While Candida albicans is generally quite susceptible to amphotericin B, non-albicans species may be less susceptible. Pseudallescheria boydii and Fusarium sp. are often resistant to amphotericin B. The antibiotic is without effect on bacteria, rickettsiae, and viruses.
Pharmacokinetics
Less than 10% of a parenteral dose of the conventional micellar
suspension of amphotericin B remains in the blood 12 h
after administration. The remainder is thought to bind to tissue
cell membranes, the highest concentrations being found
in the liver (up to 40% of the dose). Levels in the CSF are
less than 5% of the simultaneous blood concentration. The
conventional formulation has a terminal half-life of about 2
weeks. About 75% of a given dose is excreted unchanged in
the urine and feces. No metabolites have been identified.
The pharmacokinetics of lipid-based formulations are
quite diverse. Maximal serum concentrations of
the liposomal formulation are much higher than those of the
conventional micellar formulation, while levels of colloidal
dispersion and lipid complex formulations are lower due to
more rapid distribution of the drug to tissue. Administration
of lipid-associated formulations of amphotericin B results in
much higher drug concentrations in the liver and spleen than
are achieved with the conventional formulation. Renal concentrations
of the drug are much lower and its nephrotoxic
side effects are greatly reduced.
Blood concentrations are unchanged in hepatic or renal
failure. Hemodialysis does not influence serum concentrations
unless the patient is hyperlipidemic, in which case
there is some drug loss due to adherence to the dialysis
membrane.
Pharmacology
This compound has a broad spectrum of antifungal activity, including Candida albicans,
Leishmania brasiliensis, Mycobacterium leprae, Histoplasma capsulatum, Blastomyces
dermatitidus, and Coccidioides immitis. It possesses fungistatic and fungicidal activity
depending on the dose used. The antifungal activity of amphotericin B is exhibited
because it binds with sterols, in particular with ergosterol in the cellular membrane of
sensitive fungi. This reaction makes pores in the membrane and increases the permeability of the membrane to small molecules, thus reducing the function of the membrane
as an osmotic barrier and making the cells more sensitive to being destroyed.
Amphotericin B is active against growing cells and cells that are dormant. However, this
compound is not highly selective and reacts with host mammalian cells. Despite the
many side effects, amphotericin B remains the primary drug for treating severe, acute
systemic fungal infections. It is used for generalized fungal infections, such as candidomycosis, aspergillosis, histoplasmosis, cryptococcosis, coccidioidomycosis, blastomycosis, and pulmonary mycoses. Synonyms of this drug are amphocyclin, fungisone,
fungilin, and others.
Clinical Use
Aspergillosis
Systemic mycoses with dimorphic fungi (blastomycosis,
coccidioidomycosis, histoplasmosis, paracoccidioidomycosis, penicilliosis)
Candidosis
Cryptococcosis
Hyalohyphomycosis, mucormycosis, phaeohyphomycosis
Visceral leishmaniasis
Clinical Use
Amphotericin B is most commonly used to treat serious
disseminated yeast and dimorphic fungal infections in
immunocompromised hospitalized patients. As additional
experience has been gained in the treatment of
fungal infections with the newer azoles, the use of amphotericin
B has diminished; if azole drugs have equivalent
efficacy, they are preferred to amphotericin B because
of their reduced toxicity profile and ease of
administration. For the unstable neutropenic patient
with Candida albicans fungemia, amphotericin B is the
drug of choice.
Amphotericin B remains the drug of choice in the
treatment of invasive aspergillosis, locally invasive mucormycosis,
and many disseminated fungal infections
occurring in immunocompromised hosts (the patient
population most at risk for serious fungal infections).
For example, the febrile neutropenic oncology patient
with persistent fever despite empirical antibacterial
therapy is best treated with amphotericin B for possible
Candida spp. sepsis.
Side Effects
Common side effects of conventional amphotericin B include
hypotension, fever, rigors, chills, headache, backache, nausea,
vomiting, anorexia, anemia, disturbances in renal function
(including hypokalemia and hypomagnesemia), renal toxicity,
abnormal liver function (discontinue treatment), rash
and anaphylactoid reactions. Risk factors for nephrotoxicity
include average daily dose, concomitant treatment with other
nephrotoxic drugs and elevated baseline serum creatinine.
The lipid-associated formulations all lower the risk of
amphotericin B-induced renal failure. However, infusionrelated
side effects, such as fever, rigors and hypotension,
develop in up to 40% of patients treated with the colloidal
dispersion, and hypoxic events also occur; as a result
this formulation is not widely used. In contrast, infusionrelated
reactions are uncommon with liposomal amphotericin
B or the lipid complex. Patients who have developed
renal impairment while receiving the conventional formulation
of amphotericin B have improved or stabilized when
lipid-associated amphotericin B was substituted, even when
the dose was increased. Renal function should be measured
at regular intervals, particularly in patients receiving other
nephrotoxic drugs.
Safety Profile
Poison by intravenous and intraperitoneal routes. Human systemic effects by intravenous route: leukopenia, lung changes, and cardiac changes.Experimental reproductive effects. Mutation data reported. When heated to decomposition it emits toxic fumes of NOx.
Synthesis
Amphotericin B, is a large polyene antibiotic made from the cultural fluid of the actinomycete Streptomyces nodosus.
Veterinary Drugs and Treatments
Amphotericin B has been used topically and subconjunctivally to treat cases of equine fungal keratitis. Amphotericin B is fungistatic or fungicidal depending on the concentration obtained in body fluids and the susceptibility of the fungus. The drug acts by binding to sterols in the cell membrane of susceptible fungi with a resultant change in membrane permeability allowing leakage of intracellular components. Mammalian cell membranes also contain sterols and it has been suggested that the damage to human cells and fungal cells may share common mechanisms. Amphotericin B has been shown to be effective against the following fungi: Histoplasma capsulatum, Coccidioides immitis, Candida species, Blastomyces dermatitidis, Rhodotorula, Cryptococcus neoformans, Sporothrix schenckii, Mucor mucedo, and Aspergillus fumigatus. While Candida albicans is generally quite susceptible to amphotericin B, non-albicans species may be less susceptible. Pseudallescheria boydii and Fusarium spp. are often resistant to amphotericin B. The major action of amphotericin B is to bind ergosterol in the fungal plasma cell membrane, making the membrane more permeable and resulting in leakage of cell electrolytes and cell death. At high concentrations, amphotericin B is thought to cause oxidative damage to the fungal cell or disruption of fungal cell enzymes.
in vitro
amphotericin b was the most effective drug for treating many life-threatening fungal infections. in cells expressing tlr2 and cd14, amphotericin b induced signal transduction and inflammatory cytokine release. in primary murine macrophages and human cell lines expressing tlr2, cd14, and the adapter protein myd88, amphotericin induced nf-κb-dependent reporter activity and cytokine release, whereas cells deficient in any of these failed to respond. cells with tlr4 mutation were less responsive to amphotericin b stimulation than cells expressing normal tlr4 [1]. amphotericin b could interact with cholesterol, the major sterol of mammal membranes, thus limiting the usefulness of amphotericin b due to its relatively high toxicity [2]. low amb concentrations (≤ 0.1 μm) induced a polarization potential in kcl-loaded liposomes suspended in an iso-osmotic sucrose solution, indicating k+ leakage. amb (> 0.1 μm) allowed cations and anions movements. lps suspended in an iso-osmotic nacl solution and exposed to amb (0.05 μm) exhibited a nearly total collapse of the negative membrane potential, indicated that na+ entered into the cells [3].
in vivo
amphotericin b prolonged the incubation time and decreased prpsc accumulation in the hamster scrapie model. amphotericin b markedly resulted in reduction of prpsc levels in mice with transmissible subacute spongiform encephalopathies (tsse) [4].
Metabolism
Exclusively renal
storage
Store at -20°C
References
Kinsky et al. (1970), Antibiotic interaction with model membranes; Annu. Rev. Pharmacol., 10 119 Sokol-Anderson et al. (1986), Amphotericin B-Induced Oxidative Damage and Killing of Candida Albicans; Infect. Dis., 154 75 Grela et al. (2019), Modes of the antibiotic activity of amphotericin B against Candida albicans; Rep., 9 17029 Paila et al. (2010), Amphotericin B inhibits entry of Leishmaniz donovani into primary macrophages; Biophys. Res. Commun., 399 429
Properties of Amphotericin B
Melting point: | >170°C |
Boiling point: | 804.34°C (rough estimate) |
alpha | D24 +333° (acidic DMF); -33.6° (0.1N methanolic HCl) |
Density | 1.34 |
refractive index | 1.5280 (estimate) |
storage temp. | 2-8°C |
solubility | sterile water: 20 mg/mL as a stock solution. Stock solutions should be stored at −20°C. Stable at 37°C for 3 days. |
form | powder |
pka | pKa ~5.7(DMF/H2O) (Uncertain) |
appearance | deep yellow prisms or needles |
color | yellow |
Water Solubility | <0.1 g/100 mL at 21 ºC |
Sensitive | Moisture & Light Sensitive |
Merck | 13,590 |
BRN | 78342 |
Stability: | Stable, but may be light sensitive. Incompatible with strong oxidizing agents. |
CAS DataBase Reference | 1397-89-3(CAS DataBase Reference) |
EPA Substance Registry System | Amphotericin B (1397-89-3) |
Safety information for Amphotericin B
Signal word | Danger |
Pictogram(s) |
Health Hazard GHS08 |
GHS Hazard Statements |
H372:Specific target organ toxicity, repeated exposure |
Precautionary Statement Codes |
P260:Do not breathe dust/fume/gas/mist/vapours/spray. P264:Wash hands thoroughly after handling. P264:Wash skin thouroughly after handling. P270:Do not eat, drink or smoke when using this product. P314:Get medical advice/attention if you feel unwell. P501:Dispose of contents/container to..… |
Computed Descriptors for Amphotericin B
InChIKey | APKFDSVGJQXUKY-INPOYWNPSA-N |
Abamectin manufacturer
Varanous Labs Pvt Ltd
Synbiotics Limited
Ralington Pharma
BDR Pharmaceuticals International Pvt Ltd
Related products of tetrahydrofuran
You may like
-
1397-89-3 amphotericin b 98%View Details
1397-89-3 -
1397-89-3 98%View Details
1397-89-3 -
Amphotericin B 1397-89-3 98%View Details
1397-89-3 -
Amphotericin 99%View Details
-
Amphotericin B 98%View Details
1397-89-3 -
Amphotericin B 1397-89-3 99%View Details
1397-89-3 -
Amphotericin B (AMT) CAS 1397-89-3View Details
1397-89-3 -
Amphotericin B CAS 1397-89-3View Details
1397-89-3