RUBIDIUM
- CAS NO.:7440-17-7
- Empirical Formula: Rb
- Molecular Weight: 85.47
- MDL number: MFCD00134055
- EINECS: 231-126-6
- SAFETY DATA SHEET (SDS)
- Update Date: 2024-05-28 13:33:29
What is RUBIDIUM?
Chemical properties
Rubidiumis a soft, silvery white metallic element. It is solid at room temperature, but melts easily at 39.3°C. Similar to the other group 1metals, rubidium reacts exothermically in water, forming corrosive rubidium hydroxide (RbOH) and hydrogen gas, Easily oxidized in air.High heat capacity and heat transfer coefficient. Soluble in acids and alcohol.
Physical properties
Rubidium is a silvery-white lightweight solid at room temperature, but it melts at just 38.89°C (102°F), which is just over the human body's normal temperature. It's boiling point is 686°C, it's density is 1.532 g/cm3, and it has an oxidation state of +1.
Isotopes
There are 30 isotopes of rubidium, ranging from Rb-75 to Rb-98. Rb-85 is theonly stable form of rubidium and constitutes 72.17% of all rubidium isotopes found inthe Earth’s crust. Rb-87 is radioactive (a half-life of 4.9×1010 years) and makes up about27.83% of the remainder of rubidium found in the Earth’s crust. All the other 28 isotopes make up a tiny fraction of all the rubidium found on Earth and are radioactive withvery short half-lives.
Origin of Name
Rubidium is named for the Latin word rubidus, meaning “reddish.
Occurrence
Rubidium does not exist in its elemental metallic form in nature. However, in compoundforms it is the 22nd most abundant element on Earth and, widespread over most land areasin mineral forms, is found in 310 ppm. Seawater contains only about 0.2 ppm of rubidium,which is a similar concentration to lithium. Rubidium is found in complex minerals and untilrecently was thought to be a rare metal. Rubidium is usually found combined with other Earthmetals in several ores. The lepidolite (an ore of potassium-lithium-aluminum, with traces ofrubidium) is treated with hydrochloric acid (HCl) at a high temperature, resulting in lithiumchloride that is removed, leaving a residue containing about 25% rubidium. Another processuses thermochemical reductions of lithium and cesium ores that contain small amounts ofrubidium chloride and then separate the metals by fractional distillation.
History
Rubidium was discovered in 1861 by Bunsen and Kirchhoff in the mineral lepidolite by use of the spectroscope. The element is much more abundant than was thought several years ago. It is now considered to be the 16th most abundant element in the Earth’s crust. Rubidium occurs in pollucite, carnallite, leucite, and zinnwaldite, which contains traces up to 1%, in the form of the oxide. It is found in lepidolite to the extent of about 1.5%, and is recovered commercially from this source. Potassium minerals, such as those found at Searles Lake, California, and potassium chloride recovered from brines in Michigan also contain the element and are commercial sources. It is also found along with cesium in the extensive deposits of pollucite at Bernic Lake, Manitoba. Rubidium can be liquid at room temperature. It is a soft, silvery-white metallic element of the alkali group and is the second most electropositive and alkaline element. It ignites spontaneously in air and reacts violently in water, setting fire to the liberated hydrogen. As with other alkali metals, it forms amalgams with mercury and it alloys with gold, cesium, sodium, and potassium. It colors a flame yellowish violet. Rubidium metal can be prepared by reducing rubidium chloride with calcium, and by a number of other methods. It must be kept under a dry mineral oil or in a vacuum or inert atmosphere. Thirty-five isotopes and isomers of rubidium are known. Naturally occurring rubidium is made of two isotopes, 85Rb and 87Rb. Rubidium-87 is present to the extent of 27.83% in natural rubidium and is a beta emitter with a half-life of 4.9 × 1010 years. Ordinary rubidium is sufficiently radioactive to expose a photographic film in about 30 to 60 days. Rubidium forms four oxides: Rb2O, Rb2O2, Rb2O3, Rb2O4. Because rubidium can be easily ionized, it has been considered for use in “ion engines” for space vehicles; however, cesium is somewhat more efficient for this purpose. It is also proposed for use as a working fluid for vapor turbines and for use in a thermoelectric generator using the magnetohydrodynamic principle where rubidium ions are formed by heat at high temperature and passed through a magnetic field. These conduct electricity and act like an armature of a generator thereby generating an electric current. Rubidium is used as a getter in vacuum tubes and as a photocell component. It has been used in making special glasses. RbAg4I5 is important, as it has the highest room-temperature conductivity of any known ionic crystal. At 20°C its conductivity is about the same as dilute sulfuric acid. This suggests use in thin film batteries and other applications. The present cost in small quantities is about $50/g (99.8% pure).
Characteristics
Rubidium is located between potassium and cesium in the first group in the periodic table.It is the second most electropositive alkali element and reacts vigorously and explosively in airor water. If placed on concrete on a sunny day, it would melt and then react violently withmoist air to release hydrogen with enough heat to burn the hydrogen. If a chunk of rubidiummetal is left on a table exposed to the air, it combusts spontaneously. Rubidium must be storedin oil, such as kerosene.
The Uses of RUBIDIUM
Because rubidium is a much larger atom than lithium or sodium, it gives up its outer valence electron easily, thus becoming a positive ion (oxidation state = Ru+). Rubidium forms numerous compounds, but only a few are useful. One of the main uses for rubidium is as a getter in vacuum tubes used in early radios, TVs, and cathode-ray tubes. When rubidium gas is placed in sealed glass cells along with an inert gas, it becomes a rubidium-gas cell clock. Because of the consistent and exact frequency (vibrations) of it atoms, it is a very accurate timekeeper. Rubidium and selenium are used in the manufacture of photoelectric cells, sometimes called electric eyes. Rubidium is a very caustic alkali (base) with a high pH value that makes it an excellent reducing agent (highly electropositive) in industry and chemical laboratories. A unique use is its ability to locate brain tumors. It is a weak radioisotope able to attach itself to diseased tissue rather than healthy tissue, thus making detection possible.
Definition
rubidium: Symbol Rb. A soft silvery white metallic element belonging togroup 1 (formerly IA) of the periodictable; a.n. 37; r.a.m. 85.47; r.d. 1.53;m.p. 38.89°C; b.p. 688°C. It is foundin a number of minerals (e.g. lepidolite)and in certain brines. The metalis obtained by electrolysis of moltenrubidium chloride. The naturally occurringisotope rubidium–87 is radioactive(see rubidium–strontiumdating). The metal is highly reactive,with properties similar to those ofother group 1 elements, ignitingspontaneously in air. It was discoveredspectroscopically by Robert Bunsenand Gustav Kirchhoff in 1861.
Preparation
Although rubidium metals have been prepared by fused salt electrolysis, the highly reactive nature of the metals complicates the collection step and favors the use of other preparative methods where the metals can be removed in vapor form from the reaction mixture. The oxides, hydroxides, carbonates, halides, sulphates, chromates and nitrates of rubidium have been reduced to the metals by strong reducing metals such as sodium, calcium, magnesium, barium, iron, zirconium, aluminum or silicon at moderately high temperatures. The preferred method, however, involves the reduction of the anhydrous metal chlorides with calcium metal under vacuum. Anhydrous rubidium chloride is mixed with a large excess of calcium chips and heated under vacuum at 700- 800°C. As the chloride is reduced, metal vapors issue from the reaction mixture and are led under the vacuum to a cooler portion of the vessel where they condense and drop into a collection vessel.
Production Methods
Rubidium is recovered from its ore lepidolite or pollucite. Mineral lepidolite is a lithium mica having a composition: KRbLi(OH,F)Al2Si3O10. The ore is opened by fusion with gypsum (potassium sulfate) or with a mixture of barium sulfate and barium carbonate. The fused mass is extracted with hot water to leach out water-soluble alums of cesium, rubidium, and potassium. The solution is filtered to remove insoluble residues. Alums of alkali metals are separated from solution by fractional crystallization. Solubility of rubidium alum or rubidium aluminum sulfate dodecahydrate, RbAl(SO4)2?12H2O falls between potassium and cesium alum.
Alternatively, the mineral is opened by prolonged heating with sulfuric acid. Often calcium fluoride (fluorspar) is added for removal of silicon. Alkali metals are converted into water-soluble sulfates. After filtering residual solid, the solution is treated with ammonium or potassium carbonate or carbon dioxide. Lithium precipitates as lithium carbonate. Alkali metal carbonates are converted back to alums and separated by fractional crystallization.
Rubidium alum obtained by either method above is decomposed by treatment with alkali solutions for removal of aluminum and sulfate. Aluminum is precipitated as aluminum hydroxide. Addition of barium hydroxide to the filtrate removes sulfate, precipitating barium sulfate. Evaporation of the solution crystallizes rubidium as hydroxide.
Rubidium also may be recovered by the chlorostannate method. In this method the alkali metal carbonate solution obtained from the mixed alum is treated with carbon dioxide. Most potassium is precipitated as bicarbonate, KHCO3. Addition of hydrochloric acid converts the carbonates to chlorides. The chlorides are converted to chlorostannates by carefully adding stoichiometric quantities of stannic chloride at pH just below 7:
2RbCl + SnCl4 → Rb2SnCl6
Cesium chlorostannate, Cs2SnCl6, more insoluble than the rubidium salt, precipitates before any rubidium starts to precipitate. Under such controlled addition of stannic chloride, potassium chloride remains in solution in chloride form. Rubidium chlorostannate complex, on thermal decomposition, forms rubidium chloride, RbCl.
Rubidium metal may be obtained from its carbonate, hydroxide or chloride by reduction with magnesium or calcium at high temperatures in the presence of hydrogen:
Rb2CO3 + 3Mg → 2Rb + 3MgO +C
2RbOH + Mg → 2Rb + Mg(OH)2
2RbCl + Ca → 2Rb + CaCl2
Rubidium is a flammable solid. It is stored in dry hexane, isooctane or other saturated hydrocarbon liquids. Alternatively, the metal may be packaged and stored in well-sealed borosilicate glass ampules or stainless-steel containers under vacuum or an inert atmosphere.
General Description
A soft silvery metal. Shipped in very limited quantities sealed in a copper tube and over packed in a wooden box. Used in electronics.
Air & Water Reactions
Tarnishes rapidly upon exposure to air. Reacts violently with water to form corrosive RUBIDIUM hydroxide and hydrogen, a flammable gas. The heat of the reaction usually ignites the hydrogen.
Reactivity Profile
RUBIDIUM METAL is a strong reducing agent. Burns spontaneously in dry oxygen [Mellor 2:468 1946-47]. Readily catches fire in air when molten or with a sulfur vapor [Mellor 2: 469 1946-47]. Causes explosive decomposition of maleic anhydride. [Chem Safety Data Sheet SD-88 1962; Chem. Haz. Info. Series C-71 1960] Burns in chlorine [Mellor 2, Supp. 1:380 1956]. Interaction with mercury is exothermic and may be violent, [Mellor, 1941, Vol. 2, 469].
Hazard
The major hazard is from fire and explosions of the elemental metallic form of rubidium.It must be stored in an inert atmosphere or in kerosene. When rubidium contacts skin, itignites and keeps burning and produces a deep, serious wound. Water and blood just make itreact more vigorously.
Many of the compounds of rubidium are toxic and strong irritants to the skin and lungs.It is one of the elements best left to experienced handlers.
Very small traces of rubidium are found in the leaves of tobacco, tea, and coffee, as well asin several edible plants, but these radiation traces are harmless when used in moderation.
Health Hazard
Inhalation or contact with vapors, substance or decomposition products may cause severe injury or death. May produce corrosive solutions on contact with water. Fire will produce irritating, corrosive and/or toxic gases. Runoff from fire control may cause pollution.
Fire Hazard
Produce flammable gases on contact with water. May ignite on contact with water or moist air. Some react vigorously or explosively on contact with water. May be ignited by heat, sparks or flames. May re-ignite after fire is extinguished. Some are transported in highly flammable liquids. Runoff may create fire or explosion hazard.
Safety Profile
Moderately toxic by intraperitoneal route. A very reactive alkali metal (more reactive than potassium or cesium). In the body, rubidlum substitutes for potassium as an intracellular ion. The ratio of Rb/K intake is important in the toxicology of rubidium. A ratio above 40% is dangerous. In rats, a failure to gain weight is the first symptom, followed by ataxia and hyperirritabhty. Symptoms include: skin ulcers, poor hair coat, sensitivity, and extreme nervousness leading to convulsions and death. hazard when exposed to heat or flame or by chemical reaction with oxidlzers. Igmtes on contact with air, oxygen, and halogens. A very dangerous fire and explosion RUBIDIUM HYDROXIDE RPZOOO 121 5 Ignites spontaneously on contact with water. Reaction with water, moisture, or steam forms explosive hydrogen gas, whch then ignites. Explodes in contact with liquid bromine. Can react explosively with air, halogens, mercury, nonmetals, vanadium chloride oxide, moisture, acids, oxidizers. Violent reaction with vanadium trichloride oxide (at 60℃C), Cl202, P. Molten rubidium ignites in sulfur vapor and reacts vigorously with carbon. RbOH is more basic than KOH. Storage and handling: Keep under benzene, petroleum, or other liquids not containing gaseous O2. When heated to decomposition it emits toxic fumes of RbzO. See also SODIUM and SODIUM POTASSIUM ALLOY.
Metabolism
Not Available
Properties of RUBIDIUM
Melting point: | 38-39 °C (lit.) |
Boiling point: | 686 °C (lit.) |
Density | 1.53 g/mL at 25 °C (lit.) |
solubility | reacts with H2O |
form | ingot |
color | Silver |
Specific Gravity | 1.532 |
Resistivity | 11.0 μΩ-cm, 20°C |
Water Solubility | soluble in acids and alcohol [HAW93] |
Sensitive | moisture sensitive |
Merck | 13,8363 |
Exposure limits | ACGIH: TWA 2 ppm; STEL 4 ppm OSHA: TWA 2 ppm(5 mg/m3) NIOSH: IDLH 25 ppm; TWA 2 ppm(5 mg/m3); STEL 4 ppm(10 mg/m3) |
CAS DataBase Reference | 7440-17-7(CAS DataBase Reference) |
EPA Substance Registry System | Rubidium (7440-17-7) |
Safety information for RUBIDIUM
Signal word | Danger |
Pictogram(s) |
Flame Flammables GHS02 Corrosion Corrosives GHS05 |
GHS Hazard Statements |
H260:Substances And Mixtures Which, In Contact With Water,Emit Flammable Gases H314:Skin corrosion/irritation |
Precautionary Statement Codes |
P223:Keep away from any possible contact with water, because of violent reaction and possible flash fire. P260:Do not breathe dust/fume/gas/mist/vapours/spray. P280:Wear protective gloves/protective clothing/eye protection/face protection. P231+P232:Handle under inert gas. Protect from moisture. P303+P361+P353:IF ON SKIN (or hair): Remove/Take off Immediately all contaminated clothing. Rinse SKIN with water/shower. P305+P351+P338:IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continuerinsing. |
Computed Descriptors for RUBIDIUM
New Products
4-Aminotetrahydropyran-4-carbonitrile Hydrochloride (R)-3-Aminobutanenitrile Hydrochloride 4-AMINO-TETRAHYDRO-PYRAN-4-CARBOXYLIC ACID HCL 4-(Dimethylamino)tetrahydro-2H-pyran-4-carbonitrile 3-((Dimethylamino)methyl)-5-methylhexan-2-one oxalate 1,4-Dioxa-8-azaspiro[4.5]decane 5-Bromo-2-nitropyridine Nimesulide BP Aceclofenac IP/BP/EP Mefenamic Acid IP/BP/EP/USP Diclofenac Sodium IP/BP/EP/USP Ornidazole IP Diclofenac Potassium SODIUM AAS SOLUTION ZINC AAS SOLUTION BUFFER SOLUTION PH 10.0(BORATE) GOOCH CRUCIBLE SINTERED AQUANIL 5 BERYLLIUM AAS SOLUTION 2-Bromo-1-(bromomethyl)-3-chloro-5-nitrobenzene 2-Bromo-3-nitroaniline N-(3-Hydroxypropyl)-N-methylacetamide 3-Bromo-6-chloropyridazine 4-ethyl-3-nitrobenzoic acidRelated products of tetrahydrofuran
You may like
-
Rubidium CAS 7440-17-7View Details
7440-17-7 -
Rubidium CAS 7440-17-7View Details
7440-17-7 -
Rubidium CAS 7440-17-7View Details
7440-17-7 -
Rubidium CASView Details
-
Rubidium CAS 7440-17-7View Details
7440-17-7 -
1823368-42-8 98%View Details
1823368-42-8 -
2-(3-(tert-butyl)phenoxy)-2-methylpropanoic acid 1307449-08-6 98%View Details
1307449-08-6 -
Lithium ClavulanateView Details
61177-44-4