Nicotinic acid
Synonym(s):Nicotinic acid;Niacin;Pyridine-3-carboxylic acid;3-Picolinic acid;Niacin, 3-Pyridinecarboxylic acid
- CAS NO.:59-67-6
- Empirical Formula: C6H5NO2
- Molecular Weight: 123.11
- MDL number: MFCD00006391
- EINECS: 200-441-0
- SAFETY DATA SHEET (SDS)
- Update Date: 2024-12-18 13:37:16
What is Nicotinic acid?
Description
Niacin is an additive to food on the basis of its nutrient supplement qualities as a vitamin (as an enzyme co-factor). This water-soluble vitamin of the B complex occurs in various animal and plant tissues. It is required by the body for the formation of coenzymes NAD and NADP. A deficiency of niacin results in the disease, pellagra.
Chemical properties
NIACIN is sometimes referred to as nicotinic acid or nicotinamide and earlier called the P-P factor, antipellagra factor, antiblacktongue factor, and vitamin B4, niacin is available in several forms (niacin, niacinamide, niacinamide ascorbate, etc.) for use as a nutrient and dietary supplement. Niacin is frequently identified with the B complex vitamin grouping. Early in the research on niacin, a nutritional niacin deficiency was identified as the cause of pellagra in humans, blacktongue in dogs, and certain forms of dermatosis in humans. Niacin deficiency is also associated with perosis in chickens as well as poor feathering of the birds.
Physical properties
Nicotinic acid and nicotinamide are colorless crystalline substances. Each is insol uble or only sparingly soluble in organic solvents. Nicotinic acid is slightly soluble
in water and ethanol; nicotinamide is very soluble in water and moderately soluble
in ethanol
Nicotinic acid is amphoteric and forms salts with acids as well as bases. Its car boxyl group can form esters and anhydrides and can be reduced. Both nicotinic acid
and nicotinamide are very stable in dry form, but in solution nicotinamide is hydro lyzed by acids and bases to yield nicotinic ac
The coenzyme forms of niacin are the pyridine nucleotides, NAD(H) and
NADP(H). In each of these compounds, the electron-withdrawing effect of the N-1
atom and the amide group of the oxidized pyridine nucleus enables the pyridine C-4
atom to react with many nucleophilic agents (e.g., sulfite, cyanide, and hydride
ions). It is the reaction with hydride ions (H?) that is the basis of the enzymatic
hydrogen transfer by the pyridine nucleotides; the reaction involves the transfer of
two electrons in a single step
Several substituted pyridines are antagonists of niacin in biological systems:
pyridine-3-sulfonic acid, 3-acetylpyridine, isonicotinic acid hydrazine, 17 and
6-aminonicotinamide
History
Huber first synthesized nicotinic acid in 1867. In 1914, Funk isolated nicotinic acid from rice polishings. Goldberger, in 1915, demonstrated that pellagra is a nutritional deficiency. In 1917, Chittenden and Underhill demonstrated that canine blacktongue is similar to pellagra. In 1935, Warburg and Christian showed that niacinamide is essential in hydrogen transport as diphosphopyridine nucleotide (DPN). In the following year, Euler et al. isolated DPN and determined its structure. In 1937, Elvhehjem et al. cured blacktongue by administration of niacinamide derived from liver. In the same year, Fouts et al. cured pellagra with niacinamide. In 1947, Handley and Bond established conversion of tryptophan to niacin by animal tissues.
The Uses of Nicotinic acid
Nicotinic acid is also known as niacin and vitamin B3. It is a water-soluble conditioning agent that improves rough, dry, or flaky skin, helping smooth the skin and improve its suppleness. niacin enhances the appearance and feel of hair, by increasing body, suppleness, or sheen, or by improving the texture of hair that has been damaged physically or by chemical treatment. When used in the formulation of skin care products, niacinamide and niacin enhance the appearance of dry or damaged skin by reducing flaking and restoring suppleness.
What are the applications of Application
Nicotinic acid is a precursor of the coenzymes NAD and NADP. Widely distributed in nature; appreciable amounts are found in liver , fish, yeast and cereal grains. It is a water-soluble b-complex vitamin that is necessary for the growth and health of tissues. Dietary deficiency is associated with pellagra. It was functions as a nutrient and dietary supplement that prevents pellagra. The term "niacin" has also been applied. The term “niacin” has also been applied to nicotinamide or to other derivatives exhibiting the biological activity of nicotinic acid.
Background
Niacin is a B vitamin used to treat vitamin deficiencies as well as hyperlipidemia, dyslipidemia, hypertriglyceridemia, and to reduce the risk of myocardial infarctions.
Indications
Niacin is indicated to prevent vitamin deficiencies in pediatric and adult patients receiving parenteral nutrition as part of multivitamin intravenous injections. Niacin oral tablets are indicated as a monotherapy or in combination with simvastatin or lovastatin to treat primary hyperlipidemia and mixed dyslipidemia. It can also be used to reduce the risk of nonfatal myocardial infarctions in patients with a history of myocardial infarction and hyperlipidemia. Niacin is also indicated with bile acid binding resins to treat atherosclerosis in patients with coronary artery disease and hyperlipidemia or to treat primary hyperlipidemia. Finally niacin is indicated to treat severe hypertriglyceridemia.
What are the applications of Application
Nicotinic Acid is a major chemical component of coenzymes NAD+ and NADP+
Definition
ChEBI: Nicotinic acid is a pyridinemonocarboxylic acid that is pyridine in which the hydrogen at position 3 is replaced by a carboxy group. It has a role as an antidote, an antilipemic drug, a vasodilator agent, a metabolite, an EC 3.5.1.19 (nicotinamidase) inhibitor, an Escherichia coli metabolite, a mouse metabolite, a human urinary metabolite and a plant metabolite. It is a vitamin B3, a pyridinemonocarboxylic acid and a pyridine alkaloid. It is a conjugate acid of a nicotinate.
brand name
Niacor (Upsher Smith); Niaspan (KOS); Nicolar (Sanofi Aventis); Wampocap (Medpointe).
General Description
Odorless white crystalline powder with a feebly acid taste. pH (saturated aqueous solution) 2.7. pH (1.3% solution) 3-3.5.
General Description
Nicotinic acid, 3-pyridinecarboxylicacid (Niacin), is effective in the treatment of all types ofhyperlipoproteinemia except type I, at doses above thosegiven as a vitamin supplement. The drug reduces VLDLsynthesis and, subsequently, its plasma products, IDL andLDL. Plasma triglyceride levels are reduced because of thedecreased VLDL production. Cholesterol levels are lowered,in turn, because of the decreased rate of LDL formationfrom VLDL. Although niacin is the drug of choicefor type II hyperlipoproteinemias, its use is limited becauseof the vasodilating side effects. Flushing occurs inpractically all patients but generally subsides when thedrug is discontinued.
The hypolipidemic effects of niacin may be caused byits ability to inhibit lipolysis (i.e., prevent the release ofFFAs and glycerol from fatty tissues). Therefore, there is areduced reserve of FFA in the liver and diminution oflipoprotein biosynthesis, which reduces the production ofVLDL. The decreased formation of lipoproteins leads to apool of unused cholesterol normally incorporated inVLDL. This excess cholesterol is then excreted throughthe biliary tract.
Air & Water Reactions
Water soluble.
Reactivity Profile
Nicotinic acid is incompatible with strong oxidizers. Nicotinic acid is also incompatible with sodium nitrite.
Fire Hazard
Flash point data for Nicotinic acid are not available; however, Nicotinic acid is probably combustible.
Biological Activity
Nicotinic acid can be converted to nicotinamide in the animal body and, in this form, is found as a component of two oxidation-reduction coenzymes, NAD and NADP.The nicotinamide portion of the coenzyme transfers hydrogens by alternating between an oxidized quaternary nitrogen and a reduced tertiary nitrogen. Enzymes that contain NAD or NADP are usually called dehydrogenases. They participate in many biochemical reactions of lipid, carbohydrate, and protein metabolism. An example of an NAD-requiring system is lactic dehydrogenase which catalyzes the conversion of lactic acid to pyruvic acid.
Biochem/physiol Actions
Nicotinic is an antioxidant and acts as a coenzyme in the form of nicotinamide adenine nucleotides(NAD). It modulates lipid metabolism and may be useful in treating dyslipidemia. Nicotinic acid reduces the low-density lipoprotein (LDL) synthesis and improves high-density lipoprotein (HDL) levels. Deficiency of niacin leads to enhanced lipid peroxidation and is implicated in Crohn′s disease Deficiency also impacts DNA repair and also leads to skin and gastrointestinal disorder pellagra.
Mechanism of action
Nicotinic acid decreases formation and secretion of VLDL by the liver.This action appears secondary to its ability to inhibit fatty acid mobilization from adipose tissue. Circulating free fatty acids provide the main source of fatty acids for hepatic triglyceride synthesis, and lowering triglyceride synthesis lowers VLDL formation and secretion by the liver. Since plasma VLDL is the source of LDL, lowering VLDL can ultimately lower LDL. In addition, nicotinic acid shifts LDL particles to larger (more buoyant) sizes. The larger LDL particles are thought to be less atherogenic. Nicotinic acid can also significantly increase plasma HDL levels; the mechanism is unknown.
Pharmacokinetics
Niacin is a B vitamin used to treat vitamin deficiencies as well as hyperlipidemia, dyslipidemia, hypertriglyceridemia, and to reduce the risk of myocardial infarctions. Niacin acts to decrease levels of very low density lipoproteins and low density lipoproteins, while increasing levels of high density lipoproteins. Niacin has a wide therapeutic window with usual oral doses between 500mg and 2000mg. Patients with diabetes, renal failure, uncontrolled hypothyroidism, and elderly patients taking niacin with simvastatin or lovastatin are at increased risk of myopathy and rhabdomyolysis.
Pharmacokinetics
Nicotinic acid is readily absorbed. Peripheral vasodilation is seen within 20 minutes, and peak plasma concentrations occur within 45
minutes. The half-life of the compound is approximately one hour, thus necessitating frequent dosing or an extended-release
formulation. Extended release tablets produce peripheral vasodilation within 1 hour, reach peak plasma concentrations within 4 to 5
hours, and have a duration of 8 to 10 hours.
Dosing of nicotinic acid should be titrated to minimize adverse effects. An initial dose of 50 to 100 mg t.i.d. often is used with immediaterelease tablets. The dose then is gradually increased by 50 to 100 mg every 3 to 14 days, up to a maximum of 6 g/day, as tolerated.
Therapeutic monitoring to assess efficacy and prevent toxicity is essential until a stable and effective dose is reached. Similar dosing
escalations are available for extended-release products, with doses normally starting at 500 mg once daily at bedtime..
Clinical Use
Nicotinic acid has been esterified to prolong itshypolipidemic effect. Pentaerythritol tetranicotinate hasbeen more effective experimentally than niacin in reducingcholesterol levels in rabbits. Sorbitol and myo-inositolhexanicotinate polyesters have been used in the treatment ofpatients with atherosclerosis obliterans.The usual maintenance dose of niacin is 3 to 6 g/daygiven in three divided doses. The drug is usually given atmealtimes to reduce the gastric irritation that often accompanieslarge doses.
Toxicity
Overdose of niacin may present with severe prolonged hypotension. Patients experiencing an overdose should be treated with supportive measures which may include intravenous fluids.
The oral LD50 in the mouse is 3720mg/kg, in the rabbit is 4550mg/kg, in the rat is 7000mg/kg, and the dermal LD50 in the rat is >2000mg/kg.
Side Effects
Compliance with nicotinic acid therapy can be poor because the drug can produce an intense cutaneous flush. This can be reduced by beginning the drug in stepped doses of 250 mg twice daily and increasing the dose monthly by 500 to 1000 mg per day to a maximum of 3000 mg per day.Taking nicotinic acid on a full stomach (end of meal) and taking aspirin before dosage can reduce the severity of flushing. Time-release forms of nicotinic acid may also decrease cutaneous flushing. Nicotinic acid can cause gastrointestinal (GI) distress,liver dysfunction (especially at high doses), decreased glucose tolerance, hyperglycemia, and hyperuricemia. Thus, it is contraindicated in patients with hepatic dysfunction, peptic ulcer, hyperuricemia, or diabetes mellitus. A paradox associated with nicotinic acid is that it is the most widely available hypolipidemic drug (it is sold over the counter), yet its use requires the closest management by the physician.
Safety Profile
Poison by intraperitoneal route. Moderately toxic by ingestion, intravenous, and subcutaneous routes. Human systemic effects: change in clotting factors, changes in platelet count. Questionable carcinogen with experimental carcinogenic data. When heated to decomposition it emits toxic fumes of NOx.
Synthesis
Nicotinic acid, pyridine-3-carboxylic acid (20.2.9) is synthesized industrially by heating a paraldehyde trimer of acetaldehyde, under pressure with ammonia, which leads to the formation of 2-methyl-5-ethylpyridine, followed by oxidation with nitric acid which gives the desired product.
Absorption
In patients with chronic kidney disease, the Cmax is 0.06μg/mL for a 500mg oral dose, 2.42μg/mL for a 1000mg oral dose, and 4.22μg/mL for a 1500mg oral dose. The Tmax is 3.0 hours for a 1000mg or 1500mg oral dose. The AUC is 1.44μg*h/mL for a 500mg oral dose, 6.66μg*h/mL for a 1000mg oral dose, and 12.41μg*h/mL for a 1500mg oral dose. These values did not drastically differ in patients requiring dialysis.
Metabolism
The metabolism of niacin is poorly described in the literature, but the metabolites niacinamide, niacinamide N-oxide, nicotinuric acid, N1-methyl-2-pyridone-5-carboxamide, N1-methyl-4-pyridone-5-carboxamide, and trigonelline have been identified in human urine.
Metabolism
Nicotinic acid is a B-complex vitamin that is converted to nicotinamide, NAD+ , and NADP+ .The latter two compounds are coenzymes and are required for oxidation/reduction reactions in a variety of biochemical pathways. Additionally, nicotinic acid is metabolized to a number of inactive compounds, including nicotinuric acid and N-methylated derivatives. Normal biochemical regulation and feedback prevent large doses of nicotinic acid from producing excess quantities of NAD+ and NADP+ .Thus, small doses of nicotinic acid, such as those used for dietary supplementation, will be primarily excreted as metabolites, whereas large doses, such as those used for the treatment of hyperlipoproteinemia, will be primarily excreted unchanged by the kidney.
Purification Methods
Crystallise the acid from *benzene, EtOH or H2O. It sublimes without decomposition. [McElvain Org Synth Coll Vol I 385 1941, Beilstein 22 III/IV 439, 22/2 V 57.]
Properties of Nicotinic acid
Melting point: | 236-239 °C(lit.) |
Boiling point: | 260C |
Density | 1.473 |
refractive index | 1.5423 (estimate) |
Flash point: | 193°C |
storage temp. | 2-8°C |
solubility | 18g/l |
form | Powder |
pka | 4.85(at 25℃) |
color | White to off-white |
PH | 2.7 (18g/l, H2O, 20℃) |
Odor | odorless to sl. odor, sour taste |
Water Solubility | 1-5 g/100 mL at 17 ºC |
Merck | 14,6525 |
BRN | 109591 |
Stability: | Stable. Incompatible with strong oxidizing agents. May be light sensitive. |
CAS DataBase Reference | 59-67-6(CAS DataBase Reference) |
NIST Chemistry Reference | Niacin(59-67-6) |
EPA Substance Registry System | Nicotinic acid (59-67-6) |
Safety information for Nicotinic acid
Signal word | Warning |
Pictogram(s) |
Exclamation Mark Irritant GHS07 |
GHS Hazard Statements |
H319:Serious eye damage/eye irritation |
Precautionary Statement Codes |
P264:Wash hands thoroughly after handling. P264:Wash skin thouroughly after handling. P280:Wear protective gloves/protective clothing/eye protection/face protection. P305+P351+P338:IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continuerinsing. P337+P313:IF eye irritation persists: Get medical advice/attention. |
Computed Descriptors for Nicotinic acid
InChIKey | PVNIIMVLHYAWGP-UHFFFAOYSA-N |
Nicotinic acid manufacturer
Covalent Incorporation
Western Drugs Ltd
HRV Global Life Sciences
New Products
(S)-3-Aminobutanenitrile hydrochloride 4-Methylphenylacetic acid N-Boc-D-alaninol N-BOC-D/L-ALANINOL Tert-butyl bis(2-chloroethyl)carbamate 3-Morpholino-1-(4-nitrophenyl)-5,6-dihydropyridin- 2(1H)-one Furan-2,5-Dicarboxylic Acid Tropic acid S-2-CHLORO PROPIONIC ACID ETHYL ISOCYANOACETATE 2-Bromo-1,3-Bis(Dimethylamino)Trimethinium Hexafluorophosphate 4-IODO BENZOIC ACID 3-NITRO-2-METHYL ANILINE 1-(2,4-DICHLOROPHENYL) ETHANAMINE (2-Hydroxyphenyl)acetonitrile 4-Bromopyrazole 5,6-Dimethoxyindanone 2-(Cyanocyclohexyl)acetic acid 4-methoxy-3,5-dinitropyridine 1-(4-(aminomethyl)benzyl)urea hydrochloride 2-aminopropyl benzoate hydrochloride diethyl 2-(2-((tertbutoxycarbonyl)amino) ethyl)malonate tert-butyl 4- (ureidomethyl)benzylcarbamate Ethyl-2-chloro((4-methoxyphenyl)hydrazono)acetateRelated products of tetrahydrofuran
You may like
-
Nicotinic acid (Niacin) 59-67-6 98%View Details
59-67-6 -
Nicotinic acid 98%View Details
-
Nicotinic Acid (SQ) CAS 59-67-6View Details
59-67-6 -
Nicotinic Acid CAS 59-67-6View Details
59-67-6 -
Nicotinic Acid (Pyridine-3-Carboxylic Acid) pure CAS 59-67-6View Details
59-67-6 -
Nicotinic acid CAS 59-67-6View Details
59-67-6 -
Nicotinic Acid Mononucleotide CAS 59-67-6View Details
59-67-6 -
Nicotinic acid 99% CAS 59-67-6View Details
59-67-6