Contact us: +91 9550333722 040 - 40102781
Structured search
India
Choose your country
Different countries will display different contents
Try our best to find the right business for you.
My chemicalbook

Welcome back!

HomeProduct name listHexachloro-1,3-butadiene

Hexachloro-1,3-butadiene

Synonym(s):Perchlorobutadiene

  • CAS NO.:87-68-3
  • Empirical Formula: C4Cl6
  • Molecular Weight: 260.76
  • MDL number: MFCD00000836
  • EINECS: 201-765-5
  • SAFETY DATA SHEET (SDS)
  • Update Date: 2024-12-18 14:08:57
Hexachloro-1,3-butadiene Structural

What is Hexachloro-1,3-butadiene?

Description

Hexachlorobutadiene was first synthesized in 1877 by chlorination of hexyl iodide. It is an industrial by-product of tetrachloroethylene, trichloroethylene, and perchloroethylene production.

Chemical properties

colourless liquid (typical odour recognition threshold:

Chemical properties

Hexachlorobutadiene is a clear, colorless liquid with a faint, turpentine-like odor.

Physical properties

Clear, yellowish-green liquid with a mild to pungent, turpentine-like odor. Odor threshold concentration is 6 ppb (quoted, Keith and Walters, 1992).

The Uses of Hexachloro-1,3-butadiene

Hexachloro-1,3-butadiene is used as an urinary biomarker as a tool for early screening of potential kidney toxicity. Hexachloro-1,3-butadiene (HCBD) causes kidney injury.

The Uses of Hexachloro-1,3-butadiene

Intermediate in the manufacture of rubber Compounds, chlorofluorocarbons, and lubricants. Hydraulic fluid, fluid for gyroscopes, heat transfer fluid, solvent, laboratory reagent. Soil fumigant for vineyards.

The Uses of Hexachloro-1,3-butadiene

Produced as an unwanted by-product during the production of tetrachloroethylene, trichloroethylene, carbon tetrachloride, and chlorine; formerly used as a pesticide in other countries

Definition

ChEBI: Hexachloro-1,3-butadiene is an organochlorine compound.

General Description

A colorless liquid with a mild odor. Insoluble in water and denser than water. Nonflammable. May be toxic by ingestion or inhalation. Used as a solvent and heat transfer fluid.

Air & Water Reactions

Insoluble in water.

Reactivity Profile

Hexachloro-1,3-butadiene rapidly decomposes rubber on contact. Can react vigorously with oxidizing materials. Reacts to form an explosive product with bromine perchlorate. . Gives highly toxic and irritating chloride fumes when burned.

Hazard

Toxic by ingestion and inhalation, a questionable carcinogen.

Health Hazard

Poisonous; may be fatal if inhaled, swallowed or absorbed through the skin. Inhalation causes repiratory difficulty and irritation of mucous membranes. Skin and eye irritant; may cause burns.

Potential Exposure

Hexachlorobutadiene is used as a sol vent; heat-transfer fluid; transformer fluid; hydraulic fluid; as a solvent for elastomers; as a wash liquor for removing higher hydrocarbons.

First aid

If this chemical gets into the eyes, remove anycontact lenses at once and irrigate immediately for at least15 min, occasionally lifting upper and lower lids. Seek med-icalattention immediately. If this chemical contacts theskin, remove contaminated clothing and wash immediatelywith soap and water. Seek medical attention immediately. Ifthis chemical has been inhaled, remove from exposure,begin rescue breathing (using universal precautions, includ-ing resuscitation mask) if breathing has stopped and CPR ifheart action has stopped. Transfer promptly to a medicalfacility. When this chemical has been swallowed, get medi-cal attention. Give large quantities of water and induce :vomiting. Do not make an unconscious person vomit.

Carcinogenicity

In rats given oral administration, it produced benign and malignant tumors in the kidneys in both sexes. The IARC then concluded that there is limited evidence that HCBD is carcinogenic in rats.
Nakagawa et al. reported that HCBD is a potent nephrotoxicant that selectively damaged the straight portion (pars recta) of the proximal tubule in the rat. They also reported administering 0.1% HCBD for 30 weeks to male Wistar rats previously given 0.1% N-ethyl-N-hydroxyethylnitrosamine (EHEN) in their drinking water for 2 weeks and that the combined treatment resulted in a significantly higher incidence of renal cell tumors than when EHEN was administered alone.

Source

Hydraulic fluids and rubber (quoted, Verschueren, 1983). An impurity in aldrin.

Environmental Fate

Chemical/Physical. Hexachlorobutadiene will not hydrolyze to any reasonable extent (Kollig, 1993).
At influent concentrations of 1.0, 0.1, 0.01, and 0.001 mg/L, the GAC adsorption capacities were 258, 91, 21, and 11 mg/g, respectively (Dobbs and Cohen, 1980).

Metabolic pathway

In the presence of glutathione (GSH), mouse liver microsomes and cytosol transform 14C-hexachloro- 1,3-butadiene (HCBD) to S- (pentachlorobutadienyl)glutathione (PCBG). PCBG formation in subcellular fractions from a mouse kidney is very limited. After an oral dose of HCBD to mice, PCBG in feces, and S-(pentachlorobutadienyl)-L- cysteine, N-acetyl-S-(pentachlorobutadienyl)-L- cysteine, and 1,1,2,3-tetrachlorobutenoic acid in the urine are identified as the metabolites.

storage

Color Code- Blue: Health Hazard/Poison: Storein a secure poison location. Prior to working with thischemical you should be trained on its proper handling andstorage. Store in tightly closed containers in a cool, well-venti lated area away from oxidizers. Where possible, auto-matically pump liquid from drums or other storage contain-ers to process containers A regulated, marked area shouldbe established w here hex achlorobutadiene is handled, used,or stored. A regulated, marked area should be establi shedwhere this chemical is handled, used, or stored in compli-ance with OSHA Standard 1910. 1045.

Shipping

UN2279 Hexachlorobutadiene, Hazard Class: 6.1; Labels: 6.1-Poisonous materials.

Purification Methods

Wash the diene with four or five 1/10th volumes of MeOH (or until the yellow colour has been extracted), then stir it for 2hours with H2SO4, wash it with distilled water until neutral and filter it through a column of P2O5. Distil it under reduced pressure through a packed column. [Rytner & Bauer J Am Chem Soc 82 298 1960, Beilstein 1 IV 998.]

Toxicity evaluation

Hexachlorobutadiene specifically damages the pars recta portion of the proximal tubule with loss of the brush border. The mechanism involves nonoxidative formation of the glutathione conjugate in liver with subsequent transport to the kidney for mercapturic acid conjugate excretion. The resulting cysteine conjugates are substrates for cysteine-conjugate b-lyase, which removes ammonia and pyruvate from the cysteine conjugate to produce thionylacyl halides and thioketenes. These toxic thiol compounds can then bind covalently to proteins and DNA in proximal tubular cells to produce nephrotoxicity. S-(1,2,3,4,4- Pentachloro-1,3-butadienyl)-L-cysteine has been identified as the ultimate metabolite responsible for hexachlorobutadieneinduced nephrotoxicity. Mitochondrial dysfunction is reported to be the ultimate subcellular toxic lesion. Enterohepatic recirculation of hexachlorobutadiene–glutathione conjugates is believed to play a major role in this mechanism, since cannulation of the bile duct of rats prevents nephrotoxicity.

Incompatibilities

Strong reaction with oxidizers, aluminum powder. Attacks aluminum; some plastics, rubber and coatings

Waste Disposal

High temperature incineration with flue gas scrubbing. Consult with environmental regulatory agencies for guidance on acceptable disposal practices. Generators of waste containing this contaminant (≥100 kg/mo) must conform to EPA regulations governing storage, transportation, treatment, and waste disposal.

Properties of Hexachloro-1,3-butadiene

Melting point: -19 °C
Boiling point: 210-220 °C(lit.)
Density  1.68
vapor pressure  0.2 mm Hg ( 20 °C)
refractive index  n20/D 1.555(lit.)
Flash point: 210-220°C
storage temp.  +4°C
solubility  Soluble in ethanol and ether (U.S. EPA, 1985)
form  neat
Odor faint turpentine odor
Water Solubility  (mg/L):
4.78 at 25 °C (shake flask-LSC, Banerjee et al., 1980)
4 at 20–25 °C (Geyer et al., 1980)
Merck  14,4678
BRN  1766570
Henry's Law Constant 3.55, 5.87, 6.90, 10.5, and 15.3 at 2.0, 6.0, 10.0, 18.0, and 25.0 °C, respectively (EPICS-SPME, Dewulf et al., 1999)
Exposure limits Potential occupational carcinogen. NIOSH REL: TWA 20 ppb (240 mg/m3); ACGIH TLV: TWA 0.02 ppm (adopted).
Dielectric constant 2.6(Ambient)
Stability: Stable. Incompatible with rubber, oxidizing agents.
CAS DataBase Reference 87-68-3(CAS DataBase Reference)
IARC 3 (Vol. 73) 1999
EPA Substance Registry System Hexachlorobutadiene (87-68-3)

Safety information for Hexachloro-1,3-butadiene

Signal word Danger
Pictogram(s)
ghs
Skull and Crossbones
Acute Toxicity
GHS06
ghs
Health Hazard
GHS08
ghs
Environment
GHS09
GHS Hazard Statements H301:Acute toxicity,oral
H310:Acute toxicity,dermal
H315:Skin corrosion/irritation
H319:Serious eye damage/eye irritation
H351:Carcinogenicity
H410:Hazardous to the aquatic environment, long-term hazard
Precautionary Statement Codes P202:Do not handle until all safety precautions have been read and understood.
P273:Avoid release to the environment.
P280:Wear protective gloves/protective clothing/eye protection/face protection.
P301+P310:IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician.
P305+P351+P338:IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continuerinsing.

Computed Descriptors for Hexachloro-1,3-butadiene

Related products of tetrahydrofuran

You may like

Statement: All products displayed on this website are only used for non medical purposes such as industrial applications or scientific research, and cannot be used for clinical diagnosis or treatment of humans or animals. They are not medicinal or edible.