Cumene
Synonym(s):Cumene;Isopropylbenzene;Cumene solution;(1-Methylethyl)benzene;2-Phenylpropane
- CAS NO.:98-82-8
- Empirical Formula: C9H12
- Molecular Weight: 120.19
- MDL number: MFCD00008881
- EINECS: 202-704-5
- SAFETY DATA SHEET (SDS)
- Update Date: 2024-12-18 14:07:02
What is Cumene?
Description
Cumene is a common name for isopropylbenzene, an organic
compound. Cumene is a volatile colorless liquid at room
temperature with a characteristic sharp, penetrating, aromatic
odor. It is insoluble in water but is soluble in alcohol and many
other organic solvents. Cumene is structurally a member of the
alkyl aromatic family of hydrocarbons, which also includes
toluene (methylbenzene) and ethylbenzene.Cumene can be
found in crude oil, refined fuels, and is a part of processed highoctane
gasoline.
Cumene is manufactured by reacting benzene with
propylene at elevated temperature and pressure in the presence
of a catalyst. It is considered an environmental pollutant
because it is a natural component of petroleum and is present
in tobacco smoke. Cumene vapor can be absorbed by the respiratory tract. Sufficiently high levels of exposure to cumene
causes central nervous system (CNS) depression leading to
death, internal bleeding of numerous organs, as well as irritation
of the eyes and respiratory system, skin, and mucous
membranes. Cumene is a high production volume chemical.
Chemical properties
cumene is oxidized to its hydroperoxide, which is used to produce propene oxide. The alcohol produced is subsequently converted back to cumene over a copper-chromium oxide catalyst to be reused in the process. The advantage of this process is that cumene is easier to hydroperoxidate (more stable).
Physical properties
Colorless liquid with an aromatic odor. Experimentally determined detection and recognition odor threshold concentrations were 40 μg/m3 (8 ppbv) and 230 μg/m3 (47 ppbv), respectively (Hellman and Small, 1974). The taste threshold concentration in water is 60 ppb (Young et al., 1996).
The Uses of Cumene
Production of phenol, acetone, and α- methylstyrene; solvent.
The Uses of Cumene
Around 98% of cumene is used in the production of phenol and its coproduct, acetone, using cumene hydroperoxide as chemical intermediate. However, the demand for cumene is largely dependent on the performance of phenol’s derivatives, which have resulted in healthy growth rates in demand for cumene. It is also used as a starting material in the production of acetophenone, α-methylstyrene, diisopropylbenzene, and dicumylperoxide. Cumene is used as a thinner for paints, lacquers, and enamels. It is also used in the manufacture of acetophenone, methylstyrene, and other chemicals commonly found in home cleaning products. Minor uses of cumene include as a constituent of some petroleum-based solvents, such as naphtha; in gasoline blending diesel fuel and highoctane aviation fuel; and as a raw material for peroxides and oxidation catalysts such as polymerization catalysts for acrylic and polyester-type resins. It is also a good solvent for fats and resins and has been suggested as a replacement for benzene in many of its industrial applications.
The Uses of Cumene
It is used as a solvent and in the productionof phenol, acetone, and acetophenone.
The Uses of Cumene
Raw Material for Phenol, Acetone and Alpha Methyl Styrene production, intermediate for argochemicals
Definition
ChEBI: Cumene is an alkylbenzene that is benzene carrying an isopropyl group.
General Description
Pharmaceutical secondary standards for application in quality control, provide pharma laboratories and manufacturers with a convenient and cost-effective alternative to the preparation of in-house working standards.
Air & Water Reactions
Flammable. Insoluble in water.
Reactivity Profile
Mixing CUMENE in equal molar portions with any of the following substances in a closed container caused the temperature and pressure to increase: chlorosulfonic acid, nitric acid, oleum, NFPA 1991.
Hazard
Toxic by ingestion, inhalation, and skin absorption; a narcotic. Moderate fire risk. Eye, skin, and upper respiratory tract irritant, and central nervous system impairment. Possible carcinogen.
Health Hazard
Narcotic action with long-lasting effects; depressant to central nervous system. Acute (short-term) inhalation exposure to cumene may cause headaches, dizziness, drowsiness, slight incoordination, and unconsciousness in humans. Cumene has a potent central nervous system (CNS) depressant action characterized by a slow induction period and long duration of narcotic effects in animals. Cumene is a skin and eye irritant. No information is available on the chronic (long-term), reproductive, developmental, or carcinogenic effects of cumene in humans. Animal studies have reported increased liver, kidney, and adrenal weights from inhalation exposure to cumene. EPA has classified cumene as a Group D, not classifiable as to human carcinogenicity.
Health Hazard
Cumene is an irritant to the eyes, skin, andupper respiratory system, and a low acutetoxicant. It is narcotic at high concentrations.The narcotic effect is induced slowly andis of longer duration relative to benzeneand toluene (ACGIH 1986). Although thetoxicity may be of same order, the hazardfrom inhalation is low due to its high boilingpoint and low vapor pressure. An exposureto 8000 ppm for 4 hours was lethal to rats.The oral toxicity of cumene was determinedto be low in animals. In addition to narcosis, itcaused gastritis. An LD50 value documentedfor mice is 1400 mg/kg (NIOSH 1986).
Chronic inhalation toxicity of cumene wasvery low in animals. Repeated exposurescaused congestion in the lungs, liver, andkidney and an increase in the kidney weight.A major portion of cumene absorbed into the body is metabolized in the liver andexcreted. The urinary metabolites constitutedconjugated alcohols or acids.
Fire Hazard
HIGHLY FLAMMABLE: Will be easily ignited by heat, sparks or flames. Vapors may form explosive mixtures with air. Vapors may travel to source of ignition and flash back. Most vapors are heavier than air. They will spread along ground and collect in low or confined areas (sewers, basements, tanks). Vapor explosion hazard indoors, outdoors or in sewers. Runoff to sewer may create fire or explosion hazard. Containers may explode when heated. Many liquids are lighter than water.
Chemical Reactivity
Reactivity with Water: No reaction; Reactivity with Common Materials: No reaction; Stability During Transport: Stable; Neutralizing Agents for Acids and Caustics: Not pertinent; Polymerization: Not pertinent; Inhibitor of Polymerization: Not pertinent.
Safety Profile
Moderately toxic by ingestion. Mdly toxic by inhalation and skincontact. Human systemic effects by inhalation: an antipsychotic, unspecified changes in the sense of smell and respiratory system. An eye and skin irritant. Potential narcotic action. Central nervous system depressant. There is no apparent difference between the toxicity of natural cumene and that derived from petroleum. See also BENZENE and TOLUENE. Flammable liquid when exposed to heat or flame; can react with oxidizing materials. Violent reaction with HNO3, oleum, chlorosulfonic acid. To fight fKe, use foam, CO2, dry chemical.
Potential Exposure
Cumene is a constituent of crude oil and finished fuels. It is released to the environment as a result of its production and processing from petroleum refining, the evaporation and combustion of petroleum products, and by the use of a variety of products containing cumene.
The most probable route of human exposure is by the inhalation of contaminated air from the evaporation of petroleum products.
Exposure may also occur through the consumption of contaminated food or water.
Potential Exposure
Cumene is used primarily in the manufacture acetone and phenol which are widely used as solvents for paints, laquers, and varnishes and to make plastics. Cumene is used in gasoline blending and as a high-octane gasoline component. It is also found as a component in tobacco smoke.
First aid
If this chemical gets into the eyes, remove anycontact lenses at once and irrigate immediately for at least15 min, occasionally lifting upper and lower lids. Seek medical attention immediately. If this chemical contacts theskin, remove contaminated clothing and wash immediatelywith soap and water. Seek medical attention immediately. Ifthis chemical has been inhaled, remove from exposure,begin rescue breathing (using universal precautions, including resuscitation mask) if breathing has stopped and CPR ifheart action has stopped. Transfer promptly to a medicalfacility. When this chemical has been swallowed, get medical attention. Do not induce vomiting
Carcinogenicity
Cumene was not a developmental toxicant
in either rats or rabbits after exposure to levels
(1200ppm and 2300ppm, respectively) associated
with maternal toxicity.9 Most genotoxic
tests with cumene have been negative.
The LD50 for penetration of rabbit skin
was 12.3 ml/kg after 14 days.4 Contact of the
liquid with the skin causes erythema and irritation.
11 Eye contamination may produce conjunctival
irritation.
It generally is agreed that cumene has no
damaging effect on the hematopoietic system,
despite its chemical similarity to benzene.5
Furthermore, cumene is not anticipated to be
a significant carcinogenic hazard because it is
metabolically similar to toluene, a substance
that showed no carcinogenic activity in 2-year
inhalation studies.
Source
As of October 1995, no MCLGs or MCLs have been proposed
although isopropylbenzene has been listed for regulation (U.S. EPA, 1996). A DWEL of 400 μg/L
was recommended (U.S. EPA, 2000).
Detected in distilled water-soluble fractions of 94 octane gasoline and Gasohol at
concentrations of 0.14 and 0.15 mg/L, respectively (Potter, 1996).
Thomas and Delfino (1991) equilibrated contaminant-free groundwater collected from
Gainesville, FL with individual fractions of three individual petroleum products at 24–25 °C for
24 h. The aqueous phase was analyzed for organic compounds via U.S. EPA approved test method
602. Average isopropylbenzene concentrations reported in water-soluble fractions of unleaded
gasoline and kerosene were 235 and 28 μg/L, respectively. When the authors analyzed the
aqueous-phase via U.S. EPA approved test method 610, average isopropylbenzene concentrations
in water-soluble fractions of unleaded gasoline and kerosene were lower, i.e., 206 and 22 μg/L,
respectively. Isopropylbenzene was detected in both water-soluble fractions of diesel fuel but were
not quantified.
Isopropylbenzene was detected in California Phase II reformulated gasoline at a concentration
of 830 mg/kg (Schauer et al., 2002).
Isopropylbenzene naturally occurs in Ceylon cinnamon, cumin, and ginger (1 ppm in rhizome)
(Duke, 1992).
Environmental Fate
ological. When isopropylbenzene was incubated with Pseudomonas putida, the substrate was converted to ortho-dihydroxy compounds in which the isopropyl part of the compound remained
intact (Gibson, 1968). Oxidation of isopropylbenzene by Pseudomonas desmolytica S44B1 and
Pseudomonas convexa S107B1 yielded 3-isopropylcatechol and a ring fission product, (+)-2-
hydroxy-7-methyl-6-oxooctanoic acid (Jigami et al., 1975).
Surface Water. Mackay and Wolkoff (1973) estimated an evaporation half-life of 14.2 min from
a surface water body that is 25 °C and 1 m deep.
Photolytic. Major products reported from the photooxidation of isopropylbenzene with nitrogen
oxides include nitric acid and benzaldehyde (Altshuller, 1983). A n-hexane solution containing
isopropylbenzene and spread as a thin film (4 mm) on cold water (10 °C) was irradiated by a
mercury medium pressure lamp. In 3 h, 22% of the applied isopropylbenzene photooxidized into
α,α-dimethylbenzyl alcohol, 2-phenylpropionaldehyde, and allylbenzene (Moza and Feicht,
1989).
A rate constant of 3.7 x 109 L/molecule·sec was reported for the reaction of isopropylbenzene
with OH radicals in the gas phase (Darnall et al., 1976). Similarly, a room temperature rate
constant of 6.6 x 10-12 cm3/molecule·sec was reported for the vapor-phase reaction of
isopropylbenzene with OH radicals (Atkinson, 1985). At 25 °C, a rate constant of 6.25 x 10-12
cm3/molecule·sec was reported for the same reaction (Ohta and Ohyama, 1985).
Chemical/Physical. Complete combustion in air yields carbon dioxide and water vapor.
Isopropylbenzene will not hydrolyze because it does not contain a hydrolyzable functional
group.
The calculated evaporation half-life of isopropylbenzene from surface water 1 m deep at 25 °C
is 5.79 h (Mackay and Leinonen, 1975).
storage
Color Code—Red: Flammability Hazard: Store ina flammable liquid storage area or approved cabinet awayfrom ignition sources and corrosive and reactive materials.May form peroxides in storage. Prior to working with thischemical you should be trained on its proper handling andstorage. Before entering confined space where this chemicalmay be present, check to make sure that an explosive concentration does not exist. Cumene must be stored to avoidcontact with oxidizers, such as permanganates, nitrites, peroxides, chlorates, and perchlorates, since violent reactionsoccur. Store in tightly closed containers in a cool well-ventilated area away from heat. Sources of ignition, such assmoking and open flames, are prohibited where Cumene isused, handled, or stored in a manner that could create apotential fire or explosion hazard. Metal containers involving the transfer of=gallons or more of this chemical shouldbe grounded and bonded. Drums must be equipped withself-closing valves, pressure vacuum bungs, and flamearresters. Use only nonsparking tools and equipment, especially when opening and closing containers of thischemical.
Shipping
UN1918 Cumene, Hazard Class: 3; Labels: 3-Flammable liquid
Toxicity evaluation
Cumene is released into the environment as a result of
production and processing from petroleum refining and the
evaporation and combustion of petroleum products. Cumene
also occurs in a variety of natural substances including
essential oils from plants and foodstuffs. When released to
soil, cumene is expected to biodegrade and may volatilize
from the soil surface. Cumene is expected to have low
mobility based on its estimated adsorption coefficient (Koc) of
820. Based on Henry’s law constant of 0.0115 atm m3 mol-1,
cumene volatilization from moist soil surfaces is expected to
be an important environmental fate and it may volatilize from
dry soil surfaces based on its vapor pressure. Cumene is
expected to strongly adsorb to soils and is not expected to
leach to groundwater.
When released into the atmosphere, a vapor pressure of
4.5 mmHg at 25°C indicates that cumene exists solely as
a vapor in the ambient atmosphere. Cumene in the vapor
phase reacts with photochemically generated hydroxyl radicals.
The reaction of cumene in the vapor phase with ozone has an
estimated half-life of 2.5 days. Cumene may also react with
ozone radicals found in the atmosphere but not at an environmentally
important rate.
Incompatibilities
Vapor may form explosive mixture with air. Incompatible with oxidizers (chlorates, nitrates, peroxides, permanganates, perchlorates, chlorine, bromine, 942 Cumene fluorine, etc.); contact may cause fires or explosions. Keep away from alkaline materials, strong bases, strong acids, oxoacids, epoxides. Air contact forms cumene hydroperoxide. Attacks rubber. May accumulate static electrical charges, and may cause ignition of its vapors.
Waste Disposal
Dissolve or mix the material with a combustible solvent and burn in a chemical incinerator equipped with an afterburner and scrubber. All federal, state, and local environmental regulations must be observed.
Properties of Cumene
Melting point: | −96 °C(lit.) |
Boiling point: | 152-154 °C(lit.) |
Density | 0.864 g/mL at 25 °C(lit.) |
vapor density | 4.1 (vs air) |
vapor pressure | 8 mm Hg ( 20 °C) |
refractive index | n |
Flash point: | 115 °F |
storage temp. | 2-8°C |
solubility | 0.05g/l |
form | Liquid |
pka | >14 (Schwarzenbach et al., 1993) |
color | Clear colorless |
Odor | Strong, slightly irritant; fragrant; aromatic. |
explosive limit | 0.8-6.0%(V) |
Odor Threshold | 0.0084ppm |
Water Solubility | Soluble in alcohol, ether, acetone, benzene, carbon tetrachloride. Insoluble in water. |
Merck | 14,2617 |
BRN | 1236613 |
Henry's Law Constant | 13.0, 15.3, and 23.9 at 28.0, 35.0, and 46.1 °C, respectively (headspace method, Hansen et al.,
1993) |
Exposure limits | Flammable liquid; flash point (closed cup)
36°C (97°F) (NFPA 1986), 39°C (102°F)
(Merck 1996), 35.5°C (96°F) (Meyer 1989);
vapor pressure 8 torr at 20°C (68°F); vapor
density 4.1 (air=1); the vapor is heavier than
air and may travel a considerable distance
to a nearby ignition source and flash back;
autoignition temperature 425°C (797°F); fire- extinguishing agent: dry chemical, foam, or
CO2; use a water spray to keep fire- exposed
containers cool and to disperse the vapors。 Cumene forms explosive mixtures in the air within the range 0.9–6.5% by volume in air. Cumene may form peroxide on prolonged exposure to air. It should be tested for peroxides before it is subjected to distillation or evaporation。. |
Dielectric constant | 2.4(20℃) |
Stability: | Stable, but may form peroxides in storage if in contact with the air. Test for the presence of peroxides before heating or distilling. Combustible. Incompatible with strong oxidizing agents. |
CAS DataBase Reference | 98-82-8(CAS DataBase Reference) |
IARC | 2B (Vol. 101) 2013 |
NIST Chemistry Reference | Benzene, (1-methylethyl)-(98-82-8) |
EPA Substance Registry System | Cumene (98-82-8) |
Safety information for Cumene
Signal word | Danger |
Pictogram(s) |
Flame Flammables GHS02 Exclamation Mark Irritant GHS07 Health Hazard GHS08 Environment GHS09 |
GHS Hazard Statements |
H226:Flammable liquids H304:Aspiration hazard H335:Specific target organ toxicity, single exposure;Respiratory tract irritation H411:Hazardous to the aquatic environment, long-term hazard |
Precautionary Statement Codes |
P210:Keep away from heat/sparks/open flames/hot surfaces. — No smoking. P233:Keep container tightly closed. P240:Ground/bond container and receiving equipment. P273:Avoid release to the environment. P331:Do NOT induce vomiting. P301+P310:IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician. |
Computed Descriptors for Cumene
InChIKey | RWGFKTVRMDUZSP-UHFFFAOYSA-N |
Cumene manufacturer
New Products
(S)-3-Aminobutanenitrile hydrochloride 4-Methylphenylacetic acid N-Boc-D-alaninol N-BOC-D/L-ALANINOL Tert-butyl bis(2-chloroethyl)carbamate 3-Morpholino-1-(4-nitrophenyl)-5,6-dihydropyridin- 2(1H)-one Furan-2,5-Dicarboxylic Acid Tropic acid 1-Bromo-3,5-Di-Tert-Butylbenzene S-2-CHLORO PROPIONIC ACID ETHYL ISOCYANOACETATE 2-Bromo-1,3-Bis(Dimethylamino)Trimethinium Hexafluorophosphate 4-IODO BENZOIC ACID 3-NITRO-2-METHYL ANILINE 1-(2,4-DICHLOROPHENYL) ETHANAMINE (2-Hydroxyphenyl)acetonitrile 4-Bromopyrazole 2-(Cyanocyclohexyl)acetic acid 4-methoxy-3,5-dinitropyridine 1-(4-(aminomethyl)benzyl)urea hydrochloride 2-aminopropyl benzoate hydrochloride diethyl 2-(2-((tertbutoxycarbonyl)amino) ethyl)malonate tert-butyl 4- (ureidomethyl)benzylcarbamate Ethyl-2-chloro((4-methoxyphenyl)hydrazono)acetateRelated products of tetrahydrofuran
You may like
-
Cumene CAS 98-82-8View Details
98-82-8 -
Cumene CAS 98-82-8View Details
98-82-8 -
isopropylbenzene >99% (GC) CAS 98-82-8View Details
98-82-8 -
Cumene CAS 98-82-8View Details
98-82-8 -
Cumene CAS 98-82-8View Details
98-82-8 -
98-82-8 Cumene 99%View Details
98-82-8 -
14714-50-2 (2-Hydroxyphenyl)acetonitrile 98+View Details
14714-50-2 -
118753-70-1 98+View Details
118753-70-1