CERULENIN
Synonym(s):(2R,3S,E,E)-2,3-Epoxy-4-oxo-7,10-dodecadienamide;Cerulenin, Cephalosporium caerulens - CAS 17397-89-6 - Calbiochem
- CAS NO.:17397-89-6
- Empirical Formula: C12H17NO3
- Molecular Weight: 223.27
- MDL number: MFCD00083595
- EINECS: 241-424-8
- SAFETY DATA SHEET (SDS)
- Update Date: 2024-11-14 14:09:35
What is CERULENIN?
Description
Cerulenin is a fungal metabolite originally isolated from C. caerulens that has diverse biological activities. It is active against a variety of bacteria, including B. subtilis, E. coli, B. megaterium, and B. anthracis (MICs = 12.5, 12.5, 50, and 50 μg/ml, respectively) and fungi, including strains of C. albicans, T. rubrum, and A. fumigatus (MICs = 0.8-3.7, 3.1-6.2 and 12.5-50 μg/ml, respectively). Cerulenin is an inhibitor of fatty acid synthase type I (FAS-I) and FAS-II (IC50s = 3 and 20 μM, respectively, for the E. coli enzymes). It inhibits fatty acid synthesis in a panel of human cancer cell lines, including breast, ovarian, and endometrial cancer cells, as well as reduces tumor growth in a OVCAR-3 mouse xenograft model.
Chemical properties
White powder
The Uses of CERULENIN
Cerulenin is an epoxy fatty acid amide isolated from the fungus Cephalosporium caerulens and identified as an antifungal in the 1960s. Over the past 40 years, cerulenin has found broad application in lipid biochemistry as an inhibitor fatty acid and sterol biosynthesis. Cerulenin binds to β-keto-acyl-ACP synthase blocking the interaction of malonyl CoA. Cerulenin also an inhibits bacterial fatty acid synthesis, acting on the FabH, FabB and FabF condensation enzymes. Cerulenin stimulates fatty acid oxidation and inhibits HMG-CoA synthetase activity.
The Uses of CERULENIN
Cerulenin is an epoxy fatty acid amide isolated from the fungus Cephalosporium caerulens identified as an antifungal in the 1960s. Over the past 40 years, cerulenin has found broad application in lipid biochemistry as an inhibitor fatty acid and sterol biosynthesis. Cerulenin binds to β-keto-acyl-ACP synthase blocking the interaction of malonyl CoA. Cerulenin also an inhibits bacterial fatty acid synthesis, acting on the FabH, FabB and FabF condensation enzymes. Cerulenin stimulates fatty acid oxidation and inhibits HMG-CoA synthetase activity.
The Uses of CERULENIN
Cerulenin is used as an antifungal antibiotic that inhibits sterol and fatty acids biosynthesis. Cerulenin induces apoptosis in tumor cell lines. It can be a useful biochemical tool with applications for the study of metabolism and function of fatty acids in the bacterial cell membrane and in yeast. An extensive review including the properties, uses, mechanism of action and structure has been reported.
What are the applications of Application
Cerulenin (source Cephalosporium caerulens) is An inhibitor fatty acid and sterol biosynthesis
What are the applications of Application
Cerulenin (synthetic) is a potent and specific antibiotic fatty acid synthase (FAS) inhibitor show to block fatty acid synthesis in microsomes.
Definition
ChEBI: An epoxydodecadienamide isolated from several species, including Acremonium, Acrocylindrum and Helicoceras. It inhibits the biosynthesis of several lipids by interfering with enzyme function.
General Description
An anti-fungal antibiotic that inhibits fatty acid biosynthesis by binding, in equimolar ratio, to β-keto-acyl-ACP synthase. Also inhibits sterol synthesis by blocking the activity of HMG-CoA synthetase activity. Systemic and intracerebroventricular of this compound reduces feeding and induces weight loss.
Biochem/physiol Actions
Primary Targetsterol & fatty acid biosynthesis
Purification Methods
It forms white needles from *C6H6. It has also been purified by repeated chromatography through Florisil and silica gel. It is soluble in EtOH, MeOH, *C6H6, slightly soluble in H2O and pet ether. The dl-form has m 40-42o (from *C6H6/hexane), and the 2R,3S-tetrahydrocerulenin has m 86-87o, [] 20 +44.4 (c 0.25, MeOH after 24hours). [Ohrui & Emato Tetrahedron Lett 2095 1978, Sneda et al. Tetrahedron Lett 2039 1979, Broeckman & Thomas J Am Chem Soc 99 2805 1977, Jakubowski et al. J Org Chem 47 1221 1982, Beilstein 18/2 V 201.]
References
1) Yasuno et al. (2004), Identification and molecular characterization of the beta-ketoacyl-[acyl carrier protein] synthase component of the Arabidopsis mitochondrial fatty acid synthase; J. Biol. Chem., 279 8242 2) Makimura et al. (2001), Cerulenin mimics effects of leptin on metabolic rate, food intake, and body weight independent of the melanocortin system, but unlike leptin, cerulenin fails to block neuroendocrine effects of fasting; Diabetes, 50 733 3) Metz et al. (1993), Modulation of insulin secretion from normal rat islets by inhibitors of the post-translational modifications of GTP-binding proteins; Biochem. J., 295 31 4) Ho et al. (2007), Fatty acid synthase inhibitors cerulenin and C75 retard growth and induce caspase-dependent apoptosis in human melanoma A-375 cells; Biomed. Pharmacother., 61 578
Properties of CERULENIN
Melting point: | 93.5℃ |
Boiling point: | bp 120° (10-8 mm) |
alpha | D16 +63° (c = 2 in methanol) |
Density | 1.1223 (rough estimate) |
refractive index | 1.5300 (estimate) |
storage temp. | −20°C |
solubility | acetone: 20 mg/mL, clear, colorless to yellow |
form | White to off-white solid |
pka | 15.19±0.40(Predicted) |
color | Off-white |
Merck | 13,2014 |
BRN | 4140423 |
Stability: | Stable for 2 years from date of purchase as supplied. Solutions in DMSO or ethanol may be stored at -20° for up to 1 month. |
Safety information for CERULENIN
Signal word | Warning |
Pictogram(s) |
Exclamation Mark Irritant GHS07 |
GHS Hazard Statements |
H302:Acute toxicity,oral |
Precautionary Statement Codes |
P264:Wash hands thoroughly after handling. P264:Wash skin thouroughly after handling. P270:Do not eat, drink or smoke when using this product. P301+P312:IF SWALLOWED: call a POISON CENTER or doctor/physician IF you feel unwell. P501:Dispose of contents/container to..… |
Computed Descriptors for CERULENIN
New Products
4-Fluorophenylacetic acid 4-Methylphenylacetic acid N-Boc-D-alaninol N-BOC-D/L-ALANINOL Tert-butyl bis(2-chloroethyl)carbamate 3-Morpholino-1-(4-nitrophenyl)-5,6-dihydropyridin- 2(1H)-one Furan-2,5-Dicarboxylic Acid Tropic acid S-2-CHLORO PROPIONIC ACID ETHYL ISOCYANOACETATE 2-Bromo-1,3-Bis(Dimethylamino)Trimethinium Hexafluorophosphate (6-METHYL-[1,3]DITHIOLO[4,5-b]QUINOXALIN-2-ONE INDAZOLE-3-CARBOXYLIC ACID 4-IODO BENZOIC ACID (2-Hydroxyphenyl)acetonitrile 4-Bromopyrazole 5,6-Dimethoxyindanone 2-(Cyanocyclohexyl)acetic acid 4-methoxy-3,5-dinitropyridine 2-aminopropyl benzoate hydrochloride 1-(4-(aminomethyl)benzyl)urea hydrochloride diethyl 2-(2-((tertbutoxycarbonyl)amino) ethyl)malonate tert-butyl 4- (ureidomethyl)benzylcarbamate Ethyl-2-chloro((4-methoxyphenyl)hydrazono)acetateRelated products of tetrahydrofuran
You may like
-
Cerulenin CAS 17397-89-6View Details
17397-89-6 -
Cerulenin, Cephalosporium caerulens CAS 17397-89-6View Details
17397-89-6 -
1975-50-4 98%View Details
1975-50-4 -
2-HYDROXY BENZYL ALCOHOL 98%View Details
90-01-7 -
2-Chloro-1,3-Bis(Dimethylamino)Trimethinium Hexafluorophosphate 221615-75-4 98%View Details
221615-75-4 -
61397-56-6 CIS BROMO BENZOATE 98%View Details
61397-56-6 -
14714-50-2 (2-Hydroxyphenyl)acetonitrile 98+View Details
14714-50-2 -
118753-70-1 98+View Details
118753-70-1