Contact us: +91 9550333722 040 - 40102781
Structured search
India
Choose your country
Different countries will display different contents
Try our best to find the right business for you.
My chemicalbook

Welcome back!

HomeProduct name listADP

ADP

Synonym(s):5′-ADP

  • CAS NO.:58-64-0
  • Empirical Formula: C10H15N5O10P2
  • Molecular Weight: 427.2
  • MDL number: MFCD00066473
  • EINECS: 200-392-5
  • SAFETY DATA SHEET (SDS)
  • Update Date: 2024-12-18 14:15:32
ADP Structural

What is ADP?

The Uses of ADP

Adenosine 5′-diphosphate (5′-ADP or ADP) was used as a test compound for studying the endothelium-dependent vascular response in salt sensitive (DS) and salt resistant Dahl rats (DR). The product was used to study the different P2-purinergic receptor subtypes on canine vascular smooth muscle and endothelium.

What are the applications of Application

Adenosine-5′-Diphosphate, free acid is a nucleoside diphosphate with the ability to catalyze organic reactions

Definition

ChEBI: A purine ribonucleoside 5'-diphosphate having adenine as the nucleobase.

Agricultural Uses

Adenosine diphosphate (ADP) is a phosphorus compound formed during the breakdown of adenosine triphosphate (ATP) by dephosphorylation. It is made of adenine, ribose, five carbon sugars and two phosphate groups. ADP acts as a source of energy in biochemical reactions.

Biological Activity

adenosine-5'-diphosphate is an agonist of purinergic receptors.purinergic receptors, also known as purinoceptors, are a family of plasma membrane molecules that are found in almost all mammalian tissues. within the field of purinergic signalling, these receptors have been implicated in learning and memory, locomotor and feeding behavior, and sleep. more specifically, purinergic receptors are involved in several cellular functions, such as proliferation and migration of neural stem cells, vascular reactivity, apoptosis and cytokine secretion.

Biochem/physiol Actions

Adenosine 5′-diphosphate induces human platelet aggregation and non-competitively blocks the stimulated human platelet adenylate cyclase.

in vitro

adenosine 5'-diphosphate (adp) is an adenine nucleotide having two phosphate groups esterified to the sugar moiety at the 5’ position. adp is formed through dephosphorylation of adenosine 5’-triphosphate (atp) by atpases and can be converted back to atp by atp synthases. adp can also be metabolized to adenosine 5’-monophosphate (amp) and 2’-deoxyadenosine 5’-diphosphate (dadp). adp can modulate several receptors, such as activating certain purinergic receptors and inhibiting others, inhibiting rat ecto-5’nucleotidase (ki = 0.91 nm), as well as regulating the phosphorylation status of amp-activated protein kinase [1, 2].

Enzyme inhibitor

This adenine nucleotide (FWfree-acid = 504.16 g/mol; CAS 58-64-0; Molar Absorptivity = 15,400 M–1cm–1, l = 259 nm) is a product in ATPdependent transphosphorylases, phosphohydrolases, and molecular motors; as such, ADP often inhibits these enzymes. Enzymatic Phosphorylation: ADP is a substrate for adenylate kinase (Reaction: ADP2– + MeADP " MeATP2– + AMP) and other enzymes that stabilize ATP concentrations in prokaryotes [e.g., acetate kinase (Reaction: MgADP + Acetyl-phosphate ! MeATP2– + Acetate)] and eukaryotes [e.g., pyruvate kinase (Reaction: MgADP + Phosphoenolpyruvate ! MgATP2– + Pyruvate), creatine kinase (Reaction: MgADP + Creatine-phosphate ! MgATP2– + Creatine), arginine kinase (Reaction: MgADP + Arginine-phosphate ! MgATP2– + Arginine), and nuclecleotide diphosphate kinase (Reaction: ADP2– + MgGTP2– " MgATP2– + GDP2–)]. ATP Synthase: ADP is a primary substrate for the FOF1 ATP synthase (Reaction: MgADP + Pi + High Chemiosmotic Gradient Energization State ! MgATP2– + Low Chemiosmotic Gradient Energization State). ADP can also become entrapped within a catalytic site of the rotary motor, when proton motive is low, absent, or uncoupled, and its inhibitory action under such conditions is believed to prevent wasteful hydrolysis of ATP (Reaction: MgATP2– + H2O ? MgADP + Pi). Metal Ion Binding Properties: As a polyanion, ADP not only binds physiologic divalent cations Mg2+ and Ca2+, but also forms reversible complexes with Mn2+ and Co2+. For reversible complexation of ADP2– with a metal ion Me2+, (Reaction: ADP2– + Me2+ ! MeADP), Kformation = [MeADP]/[ADP2–]free[Me2+]free, indicating that [MeADP]/[ADP2– ]free = Kformation ′ [Me2+]free. In many cases, metal-free ADP is not a substrate and instead acts as a revesible inhibitor. Good experimental design therefore demands rigorous control of free metal ion concentration to control the ratio of metal-bound and metal-free forms. When exposed to Cr(III) at elevated temperature, ADP also forms ligand exchange-inert complexes with Cr3+. Platelet Aggregation: ADP is also a well-known activator of platelet aggregation, as mediated by the ADP receptors P2Y1, P2Y12 and P2X1. Upon conversion to adenosine by ecto-ADPases, platelet activation is inhibited by means of adenosine receptors. Target(s): Hydrogenomonas facilis ribulosediphosphate (RuDP) carboxylase and NADH-, ATP-dependent CO2 fixation; platelet (Na+/K+)-ATPase; hydrogen-ion transport in chloroplasts; pyruvate dehydrogenase kinase; 5-oxo-L-prolinase, or L-pyroglutamate hydrolase; a-NADHdependent reductase, rat liver microsomes; nitrogenase; Trypanosoma cruzi hexokinase; maize leaf acetyl-coenzyme A carboxylase; rat brain mitochondrial calcium-efflux; sarcoplasmic reticulum Ca2+ ATPase; Na+-Na+ exchange mediated by (Na+/K+)ATPase reconstituted into liposomes; nitrate and nitrite assimilation in Zea mays under dark conditions; PGE1-activated platelet adenylate cyclase in rats and rabbits; mitochondrial F1-ATPase, inactive complex formed upon binding ADP at a catalytic site; ATP-sensitive K+ channels, frog skeletal muscle; human 5-phosphoribosyl-1pyrophosphate synthetase; Crithidia fasciculata glutathionylspermidine synthetase; myosin V ATPase; cystic fibrosis transmembrane conductance regulator (ABC transporter) via its adenylate kinase activity; V type ATPase/synthase.

Purification Methods

It is characterised by conversion to the acridine salt by addition of alcoholic acridine (1.1g in 50mL), filtering off the yellow salt and recrystallising from H2O. The salt has m 215o(dec), max 259nm ( 15,400) in 2O. [Baddiley & Todd J Chem Soc 648 1947, 582 1949, cf LePage Biochemical Preparations 1 1 1949, Martell & Schwarzenbach Helv Chim Acta 39 653 1956]. [Beilstein 26 III/IV 2369.]

References

1. azran, s.,frster, d.,danino, o., et al. highly efficient biocompatible neuroprotectants with dual activity as antioxidants and p2y receptor agonists. j. med. chem. 56(12), 4938-4952 (2013).2. jarvis, m.f.,bianchi, b.,uchic, j.t., et al. [3h]a-317491, a novel high-affinity non-nucleotide antagonist that specifically labels human p2x2/3 and p2x3 receptors. journal of pharmacology and experimental therapeutics 310(1), 407-416 (2004).

Properties of ADP

Melting point: >145oC (dec.)
Boiling point: 196°C
Density  2.49±0.1 g/cm3(Predicted)
storage temp.  -20°C
solubility  DMSO (Slightly, Heated), Methanol (Slightly), Water (Slightly)
form  Solid
pka pK2: 4.2(-1);pK3: 7.20(-2) (25°C)
color  White to Off-White
Merck  13,155
BRN  67722
EPA Substance Registry System Adenosine 5'-(trihydrogen diphosphate) (58-64-0)

Safety information for ADP

Computed Descriptors for ADP

InChIKey XTWYTFMLZFPYCI-KQYNXXCUSA-N
SMILES C(OP(=O)(O)OP(O)(O)=O)[C@H]1O[C@@H](N2C3C(=C(N=CN=3)N)N=C2)[C@H](O)[C@@H]1O

Related products of tetrahydrofuran

You may like

Statement: All products displayed on this website are only used for non medical purposes such as industrial applications or scientific research, and cannot be used for clinical diagnosis or treatment of humans or animals. They are not medicinal or edible.