Contact us: +91 9550333722 040 - 40102781
Structured search
India
Choose your country
Different countries will display different contents
Try our best to find the right business for you.
My chemicalbook

Welcome back!

HomeProduct name listTetrafluoroethylene

Tetrafluoroethylene

  • CAS NO.:116-14-3
  • Empirical Formula: C2F4
  • Molecular Weight: 100.01
  • MDL number: MFCD00039272
  • EINECS: 204-126-9
  • SAFETY DATA SHEET (SDS)
  • Update Date: 2023-11-28 16:31:43
Tetrafluoroethylene Structural

What is Tetrafluoroethylene?

Description

Tetrafluoroethylene is a synthetic, colorless, flammable gas that is insoluble in water. Tetrafluoroethylene is used primarily in the synthesis of polytetrafluoroethylene resins. It is also used as a monomer in the synthesis of copolymers and as a propellant for food product aerosols. When heated to decomposition, tetrafluoroethylene emits highly toxic fluorocarbon fumes. The primary route of human exposure to this compound is inhalation. Acute inhalation exposure to tetrafluoroethylene may result in irritation of the respiratory tract and buildup of fluid in the lungs (pulmonary edema). Contact with this gas can cause eye irritation. This chemical is reasonably anticipated to be a human carcinogen. (NCI05)

Chemical properties

Tetrafluoroethylene is a colorless, flammable gas. Heavier than air. insoluble in water. soluble in acetone.

The Uses of Tetrafluoroethylene

In manufacture of polymers and synthesis of fluorinated refrigerants, dielectric media and solvents. In vinyl polymerization, cycloalkylation and addition reactions.

Definition

Tetrafluoroethene is a fluorocarbon. It is a gaseous organic compound (a fluorocarbon and a haloalkene) used to make the plastic polytetrafluoroethene (PTFE).

Preparation

Tetrafluoroethylene (TFE) is manufactured from chloroform. Chloroform is fluorinated by reaction with hydrogen fluoride to produce chlorodifluoromethane (R-22). Pyrolysis of chlorodifluoromethane then yields TFE.
CHCl3 + 2 HF → CHClF2 + 2 HCl
2CHClF2 → C2F4 + 2 HCl
A laboratory synthesis entails pyrolysis of a PTFE under a vacuum. The PTFE polymer "cracks" and depending on the pressure, produces mainly C2F4.

What are the applications of Application

The main use of tetrafluoroethylene is in the manufacture of polytetrafluoroethylene (PTFE) that is used as nonstick coatings on cookware, membranes for clothing that are both waterproof and breathable, electrical-wire casing, fire- and chemical-resistant tubing, and plumbing thread seal tape.The most widely known PTFE formulation is sold under the brand name of Teflon®. PTFE was discovered by DuPont Co. in 1938.

General Description

Tetrafluoroethylene, stabilized appears as a colorless odorless gas. Easily ignited. Vapors are heavier than air. May asphyxiate by the displacement of air. May violently polymerize under prolonged exposure to fire or heat, violently rupturing the container. Under prolonged exposure to fire or heat the containers may rupture violently and rocket. Water insoluble.

Air & Water Reactions

Flammable. Forms polymeric peroxides that are explosive [Bretherick 1979 p. 164].

Reactivity Profile

Tetrafluoroethylene reacts with air (oxygen) to form polymeric peroxides that are explosive [Bretherick 1979 p. 164]. Probably susceptible to similar reactions with a number of oxidizing agents.May polymerize violently (inhibitor tends to prevent this reaction). May react violently with aluminum. Contamination of a tetrafluoroethylene gas supply system led to a reaction between the inhibitor, limonene, and the contaminant, iodine pentafluoride. This initiated an explosive polymerization event [MCA Case History No. 1520].

Hazard

Flammable, dangerous fire risk. Kidney and liver damage; kidney and liver cancer. Possible carcinogen.

Health Hazard

Inhalation causes irritation of respiratory system. Contact with eyes causes slight irritation.

Flammability and Explosibility

Extremely flammable

Safety Profile

Confirmed carcinogen. Mildly toxic by inhalation. Can act as an asphyxiant and may have other toxic properties. The gas is flammable when exposed to heat or flame. The inhibited monomer will explode if igntted. Explosive in the form of vapor when exposed to heat or flame. Will explode at pressures above 2.7 bar if limonene inhbitor is not added. Iodine pentafluoride depletes the limonene inhbitor and then causes explosive polymerization of the monomer. Mixtures with hexafluoropropene and air form an explosive peroxide. Reacts violently with SO3; air; dfluoromethylene dihypofluorite; loxygen difluoride; iodine pentafluoride; oxygen. When heated to decomposition it emits highly toxic fumes of F-. See also FLUORIDES.

Potential Exposure

A potential danger to those involved in the production of TFE and the manufacture of fluorocarbon polymers.

Carcinogenicity

Tetrafluoroethylene is reasonably anticipated to be a human carcinogen based on sufficient evidence of carcinogenicity from studies in experimental animals (NTP 1997).

Incompatibilities

Reacts with air. Hazardous polymerization may occur unless inhibited. Will explode at pressures above 2.7 bar if terpene inhibitor is not added. Inhibited monomer can decompose explosively in fire, under pressure, or upon contact with materials with which it can react exothermically. Violent reaction with oxygen, oxidizers, sulfur trioxide; halogen compounds.

Waste Disposal

Return refillable compressed gas cylinders to supplier. Nonrefillable cylinders should be disposed of in accordance with local, state and federal regulations. Allow remaining gas to vent slowly into atmosphere in an unconfined area or exhaust hood. Refillable-type cylinders should be returned to original supplier with any valve caps and outlet plugs secured and valve protection caps in place.

Properties of Tetrafluoroethylene

Melting point: -142°C
Boiling point: -76.3°C
Density  1.1507
refractive index  1.2420 (estimate)
Water Solubility  110mg/L at 28℃
Dielectric constant 1.9(Ambient)
Stability: Stable. Reactive when heated.
CAS DataBase Reference 116-14-3(CAS DataBase Reference)
NIST Chemistry Reference Ethene, tetrafluoro-(116-14-3)
IARC 2A (Vol. 19, Sup 7, 71, 110) 2017
EPA Substance Registry System Tetrafluoroethene (116-14-3)

Safety information for Tetrafluoroethylene

Computed Descriptors for Tetrafluoroethylene

Related products of tetrahydrofuran

You may like

  • 1-Methyl-6-oxo-1,6-dihydropyridazine-3-carbonitrile 98%
    1-Methyl-6-oxo-1,6-dihydropyridazine-3-carbonitrile 98%
    99903-60-3
    View Details
  • 88491-46-7 98%
    88491-46-7 98%
    88491-46-7
    View Details
  • 1823368-42-8 98%
    1823368-42-8 98%
    1823368-42-8
    View Details
  • 2-(3-(tert-butyl)phenoxy)-2-methylpropanoic acid 1307449-08-6 98%
    2-(3-(tert-butyl)phenoxy)-2-methylpropanoic acid 1307449-08-6 98%
    1307449-08-6
    View Details
  • Ethyl 3-(furan-2-yl)-3-hydroxypropanoate 25408-95-1 98%
    Ethyl 3-(furan-2-yl)-3-hydroxypropanoate 25408-95-1 98%
    25408-95-1
    View Details
  • 2-Chloro-5-fluoro-1-methoxy-3-methylbenzene 98%
    2-Chloro-5-fluoro-1-methoxy-3-methylbenzene 98%
    1805639-70-6
    View Details
  • 1784294-80-9 98%
    1784294-80-9 98%
    1784294-80-9
    View Details
  • Lithium Clavulanate
    Lithium Clavulanate
    61177-44-4
    View Details
Statement: All products displayed on this website are only used for non medical purposes such as industrial applications or scientific research, and cannot be used for clinical diagnosis or treatment of humans or animals. They are not medicinal or edible.