Contact us: +91 9550333722 040 - 40102781
Structured search
India
Choose your country
Different countries will display different contents
Try our best to find the right business for you.
My chemicalbook

Welcome back!

Homecas1152311-62-0

1152311-62-0

1152311-62-0 structural image
Product Name: Tezacaftor
Formula: C26H27F3N2O6
Inquiry

CHEMICAL AND PHYSICAL PROPERTIES

Solubility Insoluble in water
LogP 99
Dissociation Constants 13.99, 0.19

SAFETY INFORMATION

Signal word Warning
Pictogram(s)

Exclamation Mark
Irritant
GHS07
GHS Hazard Statements H302:Acute toxicity,oral
H315:Skin corrosion/irritation
H319:Serious eye damage/eye irritation
H335:Specific target organ toxicity, single exposure;Respiratory tract irritation
Precautionary Statement Codes P261:Avoid breathing dust/fume/gas/mist/vapours/spray.
P305+P351+P338:IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continuerinsing.

COMPUTED DESCRIPTORS

Molecular Weight 520.5 g/mol
XLogP3 2.9
Hydrogen Bond Donor Count 4
Hydrogen Bond Acceptor Count 9
Rotatable Bond Count 8
Exact Mass 520.18212107 g/mol
Monoisotopic Mass 520.18212107 g/mol
Topological Polar Surface Area 113 Ų
Heavy Atom Count 37
Formal Charge 0
Complexity 858
Isotope Atom Count 0
Defined Atom Stereocenter Count 1
Undefined Atom Stereocenter Count 0
Defined Bond Stereocenter Count 0
Undefined Bond Stereocenter Count 0
Covalently-Bonded Unit Count 1
Compound Is Canonicalized Yes

PRODUCT INTRODUCTION

description

Tezacaftor is a drug of the cystic fibrosis transmembrane conductance regulator (CFTR) potentiator class. It was developed by Vertex Pharmaceuticals and FDA approved in combination with [ivacaftor] to manage cystic fibrosis. This drug was approved by the FDA on February 12, 2018. Cystic Fibrosis is an autosomal recessive disorder caused by one of several different mutations in the gene for the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein, an ion channel involved in the transport of chloride and sodium ions across cell membranes. CFTR is active in epithelial cells of organs such as of the lungs, pancreas, liver, digestive system, and reproductive tract. Alterations in the CFTR gene result in altered production, misfolding, or function of the protein and consequently abnormal fluid and ion transport across cell membranes. As a result, CF patients produce thick, sticky mucus that clogs the ducts of organs where it is produced making patients more susceptible to complications such as infections, lung damage, pancreatic insufficiency, and malnutrition.