Contact us: +91 9550333722 040 - 40102781
Structured search
India
Choose your country
Different countries will display different contents
Try our best to find the right business for you.
My chemicalbook

Welcome back!

HomeProduct name listZirconium Boride

Zirconium Boride

  • CAS NO.:12045-64-6
  • Empirical Formula: B2Zr
  • Molecular Weight: 112.85
  • MDL number: MFCD00064648
  • EINECS: 234-963-5
  • SAFETY DATA SHEET (SDS)
  • Update Date: 2024-12-18 14:15:30
Zirconium Boride Structural

What is Zirconium Boride?

Description

Zirconium diboride (ZrB2) is a highly covalent refractory ceramic material with a hexagonal crystal structure. ZrB2 is known as a UHTC with a melting point of 3246C. This together with its relatively low density of B6.09 g/cm3 (measured density may be higher due to hafnium impurities) and good high-temperature strength makes it a contender for high-temperature aerospace applications, for example, hypersonic flight or rocket propulsion systems. It is an unusual ceramic with relatively high thermal and electrical conductivities.

Chemical properties

Zirconium boride, also known as zirconium diboride, a gray metallic crystals or powders. Mohs hardness 8, electrical resistivity 9.2 micro-ohm-cm (20°C), excellent thermal shock resistance, poor oxidation resistance above 1100°C. It was attacked very little by cold HCl, more rapidly by HNO3, and is dissolved by aqua regia. It reacts with H2SO4 and is readily attacked by fused alkali hydroxides, carbonates, and disulfides.
Zirconium diboride
Zirconium diboride (ZrB2) is a transition metal boride with a hexagonal crystal structure and P6/mmm symmetry. ZrB2 has a combination of metallic, ionic, and covalent bonds. Due to its strong covalent bonds, ZrB2 has a high melting temperature of 3250°C. This melting temperature classifies ZrB2 as an ultra-high temperature ceramic (UHTC). UHTCs have been proposed for use in many different applications due to their high melting temperatures (>3000°C), as well as their high strength and chemical inertness.

Physical properties

Gray metallic crystals, excellent thermal shock resistance, greatest oxidation inertness of all refractory hardmetals. Hot-pressed crucible for handling molten metals such as Zn, Mg, Fe, Cu, Zn, Cd, Sn, Pb, Rb, Bi, Cr, brass, carbon steel, cast irons, and molten cryolithe, yttria, zirconia, and alumina. Readily corroded by liquid metals such as Si, Cr, Mn, Co, Ni, Nb, Mo, Ta and attacked by molten salts such as Na O, 2 alkali carbonates, and NaOH. Severe oxidation in air occurs above 1100–1400°C. Stable above 2000°C in inert or reducing atmosphere.

The Uses of Zirconium Boride

Zirconium boride is use to improve resistance in zirconia-based, carbon-bonded refractories in contact with ferrous melts. Used in nuclear applications, aerospace refractory, in cutting tools and to protect thermocouple tubes. It also used in use of its relatively high conductivity, especially for a ceramic.

What are the applications of Application

Zirconium diboride (ZrB2) is an ultra high termparature ceramic powder. With good high temperature strength, it is used in the aerospace industry for hypersonic flight or rocket propulsion. ZrB2 is a kind of senior engineering material broadly used in various fields. Refractory for aircraft and rocket applications, thermocouple protection tubes, high temperature electrical conductor, cutting tool component, coating tantalum, cathode in high-temperature electrochemical systems.

Industrial uses

Zirconium boride is a microcrystalline graypowder of the composition ZrB2. When compressedand sintered to a specific gravity ofabout 5.3, it has a Rockwell A hardness of 90,a melting point of 2980°C, and a tensilestrength of 241 to 276 MPa. It is resistant tonitric and hydrochloric acids, to molten aluminumand silicon, and to oxidation. At 1204°Cit has a transverse rupture strength of 379 MPa.It is used for crucibles and for rocket nozzles.

Synthesis

Zirconium boride powder is mainly prepared by carbothermic reduction of ZrO2 powder and carbon black or graphite powder. The reaction equation is:
3ZrO2+B4C+8C+B2O3=3ZrB2+9CO↑
Zirconium boride obtained from zirconia and boron oxide by magnesiothermic MASHS.

Properties of Zirconium Boride

Melting point: 3100-3500°C
Density  6,1 g/cm3
RTECS  ZH7150000
form  powder
color  gray refractory solid; hexagonal, hexane
Resistivity 9.2 (ρ/μΩ.cm)
Water Solubility  It is insoluble in water.
Crystal Structure Hexagonal
Exposure limits ACGIH: TWA 5 mg/m3; STEL 10 mg/m3
NIOSH: IDLH 25 mg/m3; TWA 5 mg/m3; STEL 10 mg/m3
EPA Substance Registry System Zirconium boride (ZrB2) (12045-64-6)

Safety information for Zirconium Boride

Signal word Warning
Pictogram(s)
ghs
Flame
Flammables
GHS02
GHS Hazard Statements H228:Flammable solids
Precautionary Statement Codes P210:Keep away from heat/sparks/open flames/hot surfaces. — No smoking.
P240:Ground/bond container and receiving equipment.
P241:Use explosion-proof electrical/ventilating/lighting/…/equipment.
P280:Wear protective gloves/protective clothing/eye protection/face protection.

Computed Descriptors for Zirconium Boride

Related products of tetrahydrofuran

You may like

Statement: All products displayed on this website are only used for non medical purposes such as industrial applications or scientific research, and cannot be used for clinical diagnosis or treatment of humans or animals. They are not medicinal or edible.