Norfloxacin
Synonym(s):1-Ethyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-3-quinolinecarboxylic acid;1-Ethyl-6-fluoro-1,4-dihydro-4-oxo-7-piperazino-3-quinolinecarboxylic acid;Norfloxacin
- CAS NO.:70458-96-7
- Empirical Formula: C16H18FN3O3
- Molecular Weight: 319.33
- MDL number: MFCD00079532
- EINECS: 274-614-4
- SAFETY DATA SHEET (SDS)
- Update Date: 2024-11-05 19:05:58
What is Norfloxacin?
Absorption
Rapid
Description
Norfloxacin is the first of the third generation nalidixic acid analogs to reach the marketplace. It exhibits potent in vitro and in vivo activity against Pseudomonas, enteric gram-negative rods and gram-positive cocci. Norfloxacin is orally effective in the treatment of urinary tract infections, including those due to organisms refractory to many other agents.
Description
Norfloxacin is a fluoroquinolone antibiotic that inhibits the growth of Gram-positive and Gram-negative bacteria (MICs = 4 and 1 μg/ml for S. aureus and P. aeruginosa, respectively). It also inhibits the growth S. pseudintermedius, S. aureus, E. coli, Pasturella, and S. canis isolates from dogs (mean MIC50s = 0.25, 1, 0.03, 1, and 1 μg/ml, respectively). Topical administration of norfloxacin (0.1% v/v) reduces corneal ulcer size in a rabbit model of P. aeruginosa corneal infection. It also prevents encrusted cystitis in bladder and increases survival in a rat model of Corynebacterium group D2 infection when administered at a dose of 80 mg/kg per day. Formulations containing norfloxacin have been used to treat urinary tract and gynecological infections.
Chemical properties
Off-white to light yellow cryst powder
Originator
Kyorin (Japan)
The Uses of Norfloxacin
It finds it application as a fluorinated quinolone antibacterial. It is clinically used to treat urinary tract infections and prostatitis. In neutrophils from cirrhotic subjects, norfloxacin increases expression of IL-10 and heme oxygenase 1 (HO-1) and decreases expression of pro-inflammatory cytokines. Additionally, when complexed with gold(III), norfloxacin binds DNA and inhibits cellular proliferation in several cancer cell lines.
The Uses of Norfloxacin
An antibacterial. Fluorinated quinolone antibacterial
The Uses of Norfloxacin
Pefloxacin derivative as antibacterial. Fluorinated quinolone antibacterial.
What are the applications of Application
Norfloxacin is a fluorinated quinolone antibacterial agent
Indications
For the treatment of urinary tract infection
Background
A synthetic fluoroquinolone (fluoroquinolones) with broad-spectrum antibacterial activity against most gram-negative and gram-positive bacteria. Norfloxacin inhibits bacterial DNA gyrase.
Definition
ChEBI: A quinolinemonocarboxylic acid with broad-spectrum antibacterial activity against most gram-negative and gram-positive bacteria. Norfloxacin is bactericidal and its mode of action depends on blocking of bacterial DNA replication by binding itself to an enz me called DNA gyrase.
Manufacturing Process
36 g (0.134 mol) of 7-chloro-1-ethyl-6-fluoro-4-oxo-1,4-dihydroquinoline-3carboxylic acid, 46 g of piperazine and 210 cm3 of pyridine were heated under reflux for 6 hours, while stirring. After the starting material had dissolved, a precipitate appeared after heating for about 2 hours 30 minutes. The major part of the solvent was removed by concentration in vacuo (15 mm Hg; 100°C). In order to remove the pyridine as completely as possible, the residue was taken up in 200 cm3of water and the concentration in vacuo was repeated.
The residue, resuspended in 150 cm3 of water, was stirred. 150 cm3 of 2N NaOH were added thereto. The solution, which was slightly turbid, was treated with 5 g of animal charcoal and stirred for 30 minutes. After filtration, the pH was brought to 7.2 by adding acetic acid while stirring. The precipitate was filtered off, washed with water and dissolved in 250 cm3 of a 10% aqueous acetic acid. The acid solution (pH 4.4) was filtered and then brought to pH 7.2 by gradually added 2N NaOH.
The suspension was heated to 90°C, while stirring. The crystals were separated and recrystallized from 280 cm3 of a mixture of DMF (1 volume) and ethanol (4 volumes). After drying in vacuo over phosphorus pentoxide, 29.5 g (yield 70%) of 1-ethyl-6-fluoro-4-oxo-7-piperazinyl-1,4dihydroquinoline-3-carboxylic acid, melting point 222°C, were obtained.
In air, this product is hygroscopic and gives a hemihydrate.
brand name
Chibroxin (Merck); Noroxin (Merck).
Therapeutic Function
Antibacterial
Antimicrobial activity
It is active against a wide range of Gram-negative bacteria, including Enterobacteriaceae and Campylobacter spp. Ps. aeruginosa, Acinetobacter, Serratia and Providencia spp. are weakly susceptible (and often resistant). It has no useful activity against anaerobes, Chlamydia, Mycoplasma and Mycobacterium spp.
Pharmaceutical Applications
A 6-fluoro, 7-piperazinyl quinoline available for oral administration and as an ophthalmic ointment.
Pharmacokinetics
Norfloxacin is a quinolone/fluoroquinolone antibiotic. Norfloxacin is bactericidal and its mode of action depends on blocking of bacterial DNA replication by binding itself to an enzyme called DNA gyrase, which allows the untwisting required to replicate one DNA double helix into two. Notably the drug has 100 times higher affinity for bacterial DNA gyrase than for mammalian.
Pharmacokinetics
Oral absorption: 50–70%
Cmax 400 mg oral :1.5 mg/L after 1–1.5 h
Plasma half-life :3–4 h
Volume of distribution: 2.5–3.1 L/kg
Plasma protein binding: 15%
absorption and distribution
Norfloxacin displays linear kinetics. There is no significant accumulation with the recommended dosage of 400 mg every 12 h. Food slightly delays but does not otherwise impair absorption. Antacids reduce absorption. It is widely distributed, but concentrations in tissues other than those of the urinary tract are low: levels in the prostate are around 2.5 mg/g.
Metabolism and excretion
Six or more inactive metabolites are produced. Around 30% of a dose appears as unchanged drug in the urine and <10% as metabolites, producing peak concentrations of microbiologically active drug of around 100–400 mg/L. Urinary recovery is halved by probenecid, with little effect on the plasma concentration. The apparent plasma elimination half-life increases with renal impairment, rising to around 8 h in the anuric patient. Some of the drug appears in the bile where concentrations three- to seven-fold greater than the simultaneous plasma levels are achieved, but this is not a significant route of elimination and hepatic impairment is without effect. Very variable quantities, averaging 30% of a dose, appear in the feces, producing concentrations of active agent of around 200–2000 mg/kg.
Clinical Use
Complicated and uncomplicated urinary tract infections (including prophylaxis in recurrent infections), prostatitis
Uncomplicated gonorrhea
Gastroenteritis caused by Salmonella, Shigella and Campylobacter spp., Vibrio cholerae
Conjunctivitis (ophthalmic preparation)
Side Effects
Untoward reactions are those common to the fluoroquinolones. Gastrointestinal tract disturbances, which are generally mild, have been reported in 2–4% of patients. CNS disturbances have largely been limited to headache, drowsiness and dizziness. Co-administration with theophylline results in increased plasma theophylline levels.
Safety Profile
Poison by intravenous route.Moderately toxic by other routes. Human systemic effectsby ingestion: musculoskeletal changes. An experimentalteratogen. Other experimental reproductive effects.Mutation data reported. When heated to decomposition itemits
Synthesis
Norfloxacin, 1-ethyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-3-
quinolincarboxylic acid (33.2.18), is the first representative of a series of fluorinated
quinolones as well as the first drug of the quinolone derivatives used in medicine that contains a piperazine substituent. The method of synthesis is basically the same as that suggested for synthesizing nalidixic and oxolinic acids.
Reacting 3-chloro-4-fluoroaniline and ethyl ethoxymethylenmalonate gives the substitution product (33.2.15), which upon heating in diphenyl ester cyclizes into ethyl ester of
6-fluoro-7-chloro-1,4-dihydro-3-quinolin-4-on-carboxylic acid (33.2.16). Direct treatment
of the product with ethyl iodide in the presence of triethylamine and subsequent hydrolysis with a base gives 1-ethyl-6-fluoro-7-chloro-1,4-dihydro-3-quinolin-4-on-carboxylic
acid (33.2.17). Reacting this with piperazine gives norfloxacin (33.2.18).
Drug interactions
Potentially hazardous interactions with other drugs
Aminophylline: possibly increased risk of
convulsions, increased levels of aminophylline.
Analgesics: increased risk of convulsions with
NSAIDs.
Anticoagulants: anticoagulant effect of coumarins
enhanced.
Antimalarials: manufacturer of artemether with
lumefantrine advises avoid.
Ciclosporin: increased risk of nephrotoxicity.
Muscle relaxants: possibly increases tizanidine
concentration.
Theophylline: possibly increased risk of convulsions;
increased levels of theophylline.
Metabolism
Via liver and kidney
Metabolism
Some metabolism occurs, possibly in the liver.
Norfloxacin is eliminated through metabolism, biliary
excretion and renal excretion. Renal excretion occurs by
both glomerular filtration and net tubular secretion. In
the first 24 hours, 33-48% of the drug is recovered in the
urine.
Norfloxacin exists in the urine as norfloxacin and six
active metabolites of lesser antimicrobial potency.
The parent compound accounts for over 70% of total
excretion. About 30% of an oral dose appears in the
faeces.
Properties of Norfloxacin
Melting point: | 220°C |
Boiling point: | 555.8±50.0 °C(Predicted) |
Density | 1.2504 (estimate) |
storage temp. | Keep in dark place,Sealed in dry,Room Temperature |
solubility | Very slightly soluble in water, slightly soluble in acetone and in ethanol (96 per cent). |
form | Crystalline Powder |
pka | pKa1 6.34; pKa2 8.75(at 25℃) |
color | White to yellow |
Water Solubility | Soluble in acetic acid. Also soluble in acetone or cloroform. Slightly soluble in water |
Merck | 14,6700 |
Stability: | Hygroscopic |
InChI | InChI=1S/C16H18FN3O3/c1-2-19-9-11(16(22)23)15(21)10-7-12(17)14(8-13(10)19)20-5-3-18-4-6-20/h7-9,18H,2-6H2,1H3,(H,22,23) |
CAS DataBase Reference | 70458-96-7(CAS DataBase Reference) |
EPA Substance Registry System | 3-Quinolinecarboxylic acid, 1-ethyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)- (70458-96-7) |
Safety information for Norfloxacin
Signal word | Warning |
Pictogram(s) |
Exclamation Mark Irritant GHS07 |
GHS Hazard Statements |
H319:Serious eye damage/eye irritation |
Precautionary Statement Codes |
P264:Wash hands thoroughly after handling. P264:Wash skin thouroughly after handling. P280:Wear protective gloves/protective clothing/eye protection/face protection. P305+P351+P338:IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continuerinsing. P337+P313:IF eye irritation persists: Get medical advice/attention. |
Computed Descriptors for Norfloxacin
InChIKey | OGJPXUAPXNRGGI-UHFFFAOYSA-N |
SMILES | N1(CC)C2=C(C=C(F)C(N3CCNCC3)=C2)C(=O)C(C(O)=O)=C1 |
Abamectin manufacturer
Ralington Pharma
Aarti Drugs Ltd (part of Aarti Group of Industries)
Sreepathi Pharmaceuticals Limited
Related products of tetrahydrofuran
You may like
-
Norfloxacin 99%View Details
-
Norfloxacin 98%View Details
70458-96-7 -
Norfloxacin (NFX) CAS 70458-96-7View Details
70458-96-7 -
NORFLOXACIN IP 70458-96-7 95-99 %View Details
70458-96-7 -
Norfloxacin CAS 70458-96-7View Details
70458-96-7 -
Norfloxacin 98%View Details
-
Norfloxacin 95% CAS 70458-96-7View Details
70458-96-7 -
Norfloxacin CAS 70458-96-7View Details
70458-96-7