Contact us: +91 9550333722 040 - 40102781
Structured search
India
Choose your country
Different countries will display different contents
Try our best to find the right business for you.
My chemicalbook

Welcome back!

HomecompanyDaptomycin
Daptomycin
Daptomycin

Daptomycin

Price USD1.00
Packge 1KG
  • Min. Order:1G
  • Supply Ability:100KG
  • Time:2019-07-06

Product Details

  • Product NameDaptomycin
  • CAS No.103060-53-3
  • EINECS No.600-389-2
  • MFC72H101N17O26
  • MW1620.67
  • Appearancepowdercolorless to faint yellow
  • storage temp. Sealed in dry,Store in freezer, under -20°C
  • Melting point 202-204?C
  • Boiling point 2078.2±65.0 °C(Predicted)
  • density 1.45±0.1 g/cm3(Predicted)

AD68

Daptomycin Basic information
Antibiotic Antibacterial effect Toxicology Pharmacokinetics In vivo activity and clinical application Resistance Drug Interactions Uses
Product Name: Daptomycin
Synonyms: daptomycin;CUBICIN DAPTOMYCIN;Cidecin;Cubicin;Ly-146032;N-(N-Decanoyl-L-Trp-D-Asn-L-Asp-)cyclo[L-Thr*-Gly-L-Orn-L-Asp-D-Ala-L-Asp-Gly-D-Ser-[(3R)-3-methyl-L-Glu-]-3-(2-aminobenzoyl)-L-Ala-];N-[N-(1-Oxodecyl)-L-Trp-D-Asn-L-Asp-]-cyclo[L-Thr*-Gly-L-Orn-L-Asp-D-Ala-L-Asp-Gly-D-Ser-[(3R)-3-methyl-L-Glu-]-4-(2-aminophenyl)-4-oxo-L-Abu-];N-[N-Decanoyl-L-Trp-D-Asn-L-Asp-]-cyclo[Thr*-Gly-L-Orn-L-Asp-D-Ala-L-Asp-Gly-D-Ser-[(3R)-3-methyl-L-Glu-]-3-(2-aminobenzoyl)-L-Ala-]
CAS: 103060-53-3
MF: C72H101N17O26
MW: 1620.68
EINECS: 1533716-785-6
Product Categories: Antibacterial;Intermediates & Fine Chemicals;Pharmaceuticals;Chiral Reagents;Heterocycles;API;VIREAD;Inhibitors
Mol File: 103060-53-3.mol
Daptomycin Structure
 
Daptomycin Chemical Properties
Melting point  202-204?C
Fp  87℃
storage temp.  Store at -20°C
solubility  methanol: soluble5mg/mL
color  colorless to faint yellow
λmax 260nm(EtOH)(lit.)
Merck  14,2823
 
Safety Information
RTECS  HB5626000
Toxicity LD50 i.v. in mice: 600 mg/kg (Debono)
MSDS Information
 
 
Daptomycin Usage And Synthesis
Antibiotic Daptomycin is a kind of cyclic lipopeptide antibiotics with novel structure. It is extracted from the Streptomyces fermentation broth. It was discovered by Eli Lilly Company in the 1980s, and successfully developed in 1997 by Cubist Pharmaceuticals. It not only having a novel chemical structure but also has mode of action which is different from any antibiotic approved before: it inhibits cell by disrupting the transport of amino acids through cell membrane, thereby blocking the cell wall peptidoglycan biosynthesis and changing the nature of the cell membrane. It can destroy the bacterial cell membrane function in many aspects, and quickly kill gram-positive bacteria. In addition to the role of taking effect on most clinically relevant gram-positive bacteria, more importantly, Daptomycin has a potent efficacy in treating isolated strains which have shown signs of resistance to methicillin, vancomycin and linezolid. This property is of great clinical significance to patients suffering from severe infection.
In September 2003, the US Food and Drug Administration had approved for the first time that daptomycin could be applied for the treatment of severe skin infections. In March 2006, it was approved for treating infectious diseases.
In January 2006, it is approved by European Commission for the treatment of certain complicated skin and soft tissue infections caused by gram-positive bacteria.
On September 6, 2007, Cubist Pharmaceuticals announced that the European Union has approved its antibacterial drug, Cubicin for the treatment of right heart endocarditis caused by Staphylococcus aureus infections and complicated skin and soft tissue infection related diseases caused by Staphylococcus aureus.
On July 29, 2010, the US Food and Drug Administration (FDA) released information on the issue that intravenous injection of daptomycin (daptomycin, produced by Cubist Pharmaceuticals, with brand name “Cubicin”) may cause eosinophilic pneumonia in order to remind the patients and medical professionals. Eosinophilic pneumonia is a rare and very severe disease whose symptoms include fever, cough, shortness of breath and difficulty in breathing.
Antibacterial effect Studies have shown that daptomycin has a similar antibacterial spectrum antibacterial with vancomycin which mainly has a strong inhibitory effect against Gram-positive bacteria, MIC of Staphylococcus spp: 0.125~0.5 μg/ml; MIC for gram bacterial spp: 0.06~0.5μg/ml; MIC for enterococci: 0.25~2.0 μg/ml. Daptomycin also has a broad antibacterial spectrum against Gram-positive anaerobic bacteria: MIC for Peptostreptococcus spp: 0.12μg/ml; MIC for Clostridium spp.: 0.5 μg/ml; MIC for Lactobacillus spp.: 1 μg/ml.
Daptomycin has a good antibacterial activity on a variety of antibiotic-resistant bacteria, for example, the MIC for methicillin-resistant carbamoyl Staphylococcus (MRSA) is 0.06~0.5 μg /mL; MIC for methicillin-resistant Staphylococcus is 0.0625~1 μg/ml; MIC for oxacillin resistant strains of Staphylococcus is 0.12~0.5 μg/ml; MIC for highly aminoglycosides-resistant enterococci is 2.5μg/mL, MIC for GmrBIa-enterococci is 0.5~1 μg/mL; MIC for glycopeptide antibiotic-resistant enterococci is 1~2 μg /mL.
Toxicology According to the information of Eli Lilly pharmaceutical laboratories, daptomycin is a relatively safe, low toxic antibiotic. LD 50 of Mouse is 142~159 mg/kg (Dog 200 mg/kg). It is non-lethal but can cause weight loss and loss of appetite; LD 50 of Monkey is 25~200 mg/kg. The main symptoms are lethargy, muscle weakness, ataxia, increase in creatinine phosphokinas, and slight irritation after skin and eye contact. With different dosage (25~125 mg/kg) of drugs being administrated (intravenously) to mice for a month, each dose group all exhibited the degeneration of both renal cortical tubular epidermis and skeletal muscle. It was also observed that sciatic nerve degeneration occurred at the dose group of 150 mg/kg dos. But It has no effect on fertility and also has no teratogenic effects. During six months of chronic toxicity test, the dog was intravenously injected with daptomycin at doses of 2, 10, 40 mg/(kg·d), respectively. Only the dogs at 40 mg /(kg·d) dose group exhibited a loss of knee jerk reaction and moderate degeneration of axonal and mild declining nerve transmission rate. But these functions can be recovered after the withdrawal for two weeks. A single around of dose at 2.0mg/kg has no effect on human muscles and nervous system.
Pharmacokinetics Healthy volunteers were administrated (intravenous injection) of six different doses in the range of 0.5~6.0 mg/kg and 1.0 mg/kg 14C marked daptomycin, the results showed that daptomycin has a relatively long T1/2 in vivo (T1/2 = 6~8 h), a relatively small volume of distribution (V = 0.1~0.2 L/kg), and a renal clearance CLr of 0.17~0.2 ml/(min?kg). Daptomycin is mainly presented in the blood in the form of non-metabolized original drug with kidney as the major metabolic organ. About 78% of daptomycin is excreted in the urine. There are metabolites of daptomycin presented in the urine. The distribution pattern of daptomycin in the body is not fully understood. Patients of septicemia and endocarditis needs to subject to intravenous administration of daptomycin at a dose of 3mg/kg in every 12 h. Compared with healthy volunteers, people in daptomycin group had a average peak blood concentration (cmax): 35.45, which is lower than in healthy people. They also had an increased steady-state volume of distribution (Vss = 0.21) and a 22% increased clearance rate (CL).
In vivo activity and clinical application This product is mainly used in the treatment of endocarditis, sepsis, peritonitis and urinary tract infections caused by Staphylococcus, Streptococcus, and Enterococcus. It is of particular importance in the treatment of endocarditis caused by various drug-resistant strains. Animal experiments showed that the application of daptomycin in treatment of endocarditis, peritonitis, pneumonia, and osteomyelitis caused by MRSA or other resistant strains caused by, yields a equivalent or even better effect than vancomycin. Moreover, daptomycin has a longer in vivo t1/2 long and has a smaller side effect and therefore it has considerable clinical value. In October 1990, it was reported about the first case of the failure of daptomycin in treatment of S. aureus-caused endocarditis which is likely due to the high affinity of daptomycin to the proteins (90%), the low dose of applied drug and different pharmacokinetic parameters of patients with healthy people. Deepened study of the pharmacology and clinical application of daptomycin is still ongoing.
Resistance The incidence of the occurrence of daptomycin-resistant strains is low with only a mild resistance. In the in vitro selection of daptomycin-resistant strains from Streptococcus pneumoniae, Enterococcus, Staphylococcus, the incidence of drug-resistant strains of Streptococcus pneumoniae was the highest with 1.2 × 10-6 (16MIC) while Staphylococcus has the lowest incidence of drug-resistant strains which was only 7.0 × 10-9 (8MIC). General the MIC is only increased by 8 to 32 times. Using medium supplied no antibiotics for continuous passage of three generations can reduce the resistance ability to 1/2 to 1/4. In a rabbit model of endocarditis, after treatment of daptomycin, 13% of the rabbit produces daptomycin-resistance of Staphylococcus but with weakened resistance, indicating the stability of daptomycin resistance may involve multiple point mutations.
The above information is edited by the Chemicalbook of Dai Xiongfeng.
Drug Interactions Daptomycin has synergistic effect when used in combination with netilmicin, amikacin, imipenem, and fosfomycin. This can improve the antibacterial activity. Combination with teicoplanin, vancomycin has a good antibacterial activity against Sma GmrBla-enterococci. Combination of daptomycin with gentamicin also has synergistic effects on resistant glycopeptide antibiotics-resistant Streptococcus faecalis. This has been demonstrated in animal models. Combination of daptomycin and tobramycin for therapy can reduce the nephrotoxicity of the latter drug, which is just opposite with vancomycin.
Uses Pharmaceutical intermediates, used in the treatment of concurrent skin and skin structure infections caused by a number of Gram-positive caused by susceptible strains.
Chemical Properties Off-White to Light Yellow Solid
Uses antiviral, RT inhibitor
Uses Daptomycin is a member of the A 21978 complex of high molecular weight cyclic lipopeptides with potent antibiotic activity, notably against MRSA, VISA and VRSA bacterial strains. Originally isolated from Streptomyces roseosprous by Eli Lily in the 1980s, daptomycin was selected and developed by Cubist Pharmaceticals for human use. Daptomycin exhibits Ca-dependent depolarisation of the bacterial membrane resulting in loss of membrane potential leading to inhibition of DNA, RNA and protein synthesis which results in cell death.
Uses immunosuppressant
Uses Daptomycin is a member of the A 21978 complex of high molecular weight cyclic lipopeptides with potent antibiotic activity, notably against MRSA, VISA and VRSA bacterial strains. Originally isolated from Streptomyces roseosprous by Eli Lily in the 1980s, daptomycin was selected and developed by Cubist Pharmaceuticals for human use. Daptomycin exhibits Ca-dependent depolarisation of the bacterial membrane resulting in loss of membrane potential leading to inhibition of DNA, RNA and protein synthesis which results in cell death.
Uses Cyclic lipopeptide antibiotic derived from a fermentation product of Streptomyces roseosporus; disrupts plasma membrane function in gram-positive bacteria. Antibacterial.
Definition ChEBI: A polypeptide comprising N-decanoyltryptophan, asparagine, aspartic acid, threonine, glycine, ornithine, aspartic acid, D-alanine, aspartic acid, glycine, D-serine, threo-3-methylglutamic ac d and 3-anthraniloylalanine (also known as kynurinine) coupled in sequence and lactonised by condensation of the carboxylic acid group of the 3-anthraniloylalanine with the alcohol group of the threonine residue.

Company Profile Introduction

Henan CoreyChem Co., Ltd, based on the original Zhengzhou Cote Chemical Research Institute, be brave in absorbing highly educated talents & overseas returnees; actively responded to Zhengzhou City High-tech Zone Government’s Special Care Policy, reorganized and founded in National University of Science and Technology Park, which is a high-tech, stock enterprise of high-end chemical Custom synthesis;The park was created by the People's Government of Henan Province, and proved by Ministry of Education and the National Science & Technology, taking the construction mode of "many college a park, and common development", mainly depends on Zhengzhou University and Henan University’s scientific research and talent advantage to set up Universities, scientific research institute and enterprise scientific research achievements transformation platform, to make high-tech enterprises incubate,  is the new high-tech talent gathering base, high and new technology industry enterprise radiation base, colleges and universities technological innovation base.
 
Henan Coreychem Co., Ltd, facing global High-tech pharmaceutical raw materials, high complex new type intermediates, fine chemicals custom synthesis, scale-up production and Rare chemicals trade. Corey have well-equipped machine, strong technical force and considerate marketing team service. We also have rich experience advantage in basic research, small scale process development, scale-up, industrial technology development & production and cost control.
 

Recommended supplier

  • Since:2014-12-17
  • Address: No.967,15th Floor,Unit 7, Building 1, No.70 of DianChang Road, High-tech Development Zone, Zhengzho
INQUIRY