Chemical Safety Data Sheet MSDS / SDS

7-methyl-3-methyleneocta-1,6-diene SDS

Revision Date: 2024-04-25 Revision Number: 1

Section 2 Section 3 Section 1 Section 4 Section 5 Section 6 Section 7 Section 8 Section 9 Section 10 Section 11 Section 12 Section 13 Section 14 Section 15 Section 16

SECTION 1: Identification of the substance/mixture and of the company/undertaking

Product identifier

Product name: 7-methyl-3-methyleneocta-1,6-diene

CAS: 123-35-3

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified For R&D use only. Not for medicinal, household or other use.

uses:

Uses advised none

against:

Company Identification

Company: Chemicalbook.in

Address: 5 vasavi Layout Basaveswara Nilayam Pragathi Nagar Hyderabad, India -500090

Telephone: +91 9550333722

SECTION 2: Hazards identification

Classification of the substance or mixture

Not classified.

GHS label elements, including precautionary statements

Pictogram(s)

Signal word

Danger

Hazard statement(s)

H226 Flammable liquid and vapour

H304 May be fatal if swallowed and enters airways

H315 Causes skin irritation

H319 Causes serious eye irritation

H400 Very toxic to aquatic life

H411 Toxic to aquatic life with long lasting effects

Precautionary statement(s)

Prevention

none

Response

none

Storage

none

Disposal

none

Other hazards which do not result in classification

no data available

SECTION 3: Composition/information on ingredients

Substance

Chemical name: 7-methyl-3-methyleneocta-1,6-diene

Common names and

7-methyl-3-methyleneocta-1,6-diene

synonyms:

CAS number: 123-35-3

EC number: 204-622-5

Concentration: 100%

SECTION 4: First aid measures

Description of necessary first-aid measures

If inhaled

Move the victim into fresh air. If breathing is difficult, give oxygen. If not breathing, give artificial respiration and consult a doctor immediately. Do not use mouth to mouth resuscitation if the victim ingested or inhaled the chemical.

Following skin contact

Take off contaminated clothing immediately. Wash off with soap and plenty of water. Consult a doctor.

Following eye contact

Rinse with pure water for at least 15 minutes. Consult a doctor.

Following ingestion

Rinse mouth with water. Do not induce vomiting. Never give anything by mouth to an unconscious person. Call a doctor or Poison Control Center immediately.

Most important symptoms/effects, acute and delayed

May be harmful by inhalation, ingestion or skin absorption. (USCG, 1999)

Indication of immediate medical attention and special treatment needed, if necessary

Immediate first aid: Ensure that adequate decontamination has been carried out. If patient is not breathing, start artificial respiration, preferably with a demand valve resuscitator, bag-valve-mask device, or pocket mask, as trained. Perform CPR if necessary. Immediately flush contaminated eyes with gently flowing water. Do not induce vomiting. If vomiting occurs, lean patient forward or place on the left side (head-down position, if possible) to maintain an open airway and prevent aspiration. Keep patient quiet and maintain normal body temperature. Obtain medical attention. Poisons A and B

SECTION 5: Firefighting measures

Suitable extinguishing media

If material on fire or involved in a fire: Use water in flooding quantities as fog. Cool all affected containers with flooding quantities of water. Apply water from as far a distance as possible. Solid streams of water may be ineffective. Use "alcohol" foam, dry chemical, or carbon dioxide.

Specific hazards arising from the chemical

Special Hazards of Combustion Products: Vapor may travel considerable distance to a source of ignition and flashback. (USCG, 1999)

Special protective actions for fire-fighters

Wear self-contained breathing apparatus for firefighting if necessary.

SECTION 6: Accidental release measures

Personal precautions, protective equipment and emergency procedures

Avoid dust formation. Avoid breathing mist, gas or vapours. Avoid contacting with skin and eye. Use personal protective equipment. Wear chemical impermeable gloves. Ensure adequate ventilation. Remove all sources of ignition. Evacuate personnel to safe areas. Keep people away from and upwind of spill/leak.

Environmental precautions

Prevent further spillage or leakage if it is safe to do so. Do not let the chemical enter drains. Discharge into the environment must be avoided.

Methods and materials for containment and cleaning up

Collect and arrange disposal. Keep the chemical in suitable and closed containers for disposal. Remove all sources of ignition. Use spark-proof tools and explosion-proof equipment. Adhered or collected material should be promptly disposed of, in accordance with appropriate laws and regulations.

SECTION 7: Handling and storage

Precautions for safe handling

Handling in a well ventilated place. Wear suitable protective clothing. Avoid contact with skin and eyes. Avoid formation of dust and aerosols. Use non-sparking tools. Prevent fire caused by electrostatic discharge steam.

Conditions for safe storage, including any incompatibilities

Store in a cool place from which light and air are excluded.

SECTION 8: Exposure controls/personal protection

Control parameters

Occupational Exposure limit values

no data available

Biological limit values

no data available

Appropriate engineering controls

Ensure adequate ventilation. Handle in accordance with good industrial hygiene and safety practice. Set up emergency exits and the risk-elimination area.

Individual protection measures, such as personal protective equipment (PPE)

Eye/face protection

Wear tightly fitting safety goggles with side-shields conforming to EN 166(EU) or NIOSH (US).

Skin protection

Wear fire/flame resistant and impervious clothing. Handle with gloves. Gloves must be inspected prior to use. Wash and dry hands. The selected protective gloves have to satisfy the specifications of EU Directive 89/686/EEC and the standard EN 374 derived from it.

Respiratory protection

If the exposure limits are exceeded, irritation or other symptoms are experienced, use a full-face respirator.

Thermal hazards

no data available

SECTION 9: Physical and chemical properties and safety characteristics

Physical state: Liquid. Liquid.

Colour: Colourless slightly amber coloured.

Odour: Pleasant

Melting < -80 °C. Atm. press.:1 atm.

point/freezing

point:

Boiling point or >= 164 - <= 165 °C. Atm. press.:760 mm Hg.

no data available

initial boiling point and boiling range:

Flammability: no data available

Lower and upper

over and appea

explosion

limit/flammability

limit:

Flash point: Ca. 45 °C. Atm. press.:Ca. 1 atm.

Auto-ignition 265 °C. Atm. press.:100 248 Pa. Remarks: Experiment 1: Ignition delay: 12 seconds.;260 °C. temperature: Atm. press.:100 129 Pa. Remarks: Experiment 2: Ignition delay: 12 seconds.;259 °C. Atm.

press.: 10 089 Pa. Remarks: Experiment 3: Ignition delay: 22 seconds.

Decomposition

no data available

temperature:

pH: no data available
Kinematic no data available

viscosity:

Solubility: Soluble in alcohol, chloroform, ether, glacial acetic acid Partition log Pow = 4.82. Temperature:30 °C. Remarks:+/- 0.01.

coefficient noctanol/water:

Vapour pressure: 251 Pa. Temperature: 25 °C. Remarks: ± 35 Pa.

Density and/or

0.793. Temperature:20 °C.

relative density:

Relative vapour

4.7 (vs air)

density: Particle

no data available

characteristics:

SECTION 10: Stability and reactivity

Reactivity

no data available

Chemical stability

no data available

Possibility of hazardous reactions

A flammable liquid. The unsaturated aliphatic hydrocarbons, such as MYRCENE, are generally much more reactive than the alkanes. Strong oxidizers may react vigorously with them. Reducing agents can react exothermically to release gaseous hydrogen. In the presence of various catalysts (such as acids) or initiators, compounds in this class can undergo very exothermic addition polymerization reactions. Many of these compounds undergo autoxidation upon exposure to the air to form explosive peroxides. Violent explosions have occurred at low temperatures in ammonia synthesis gas units. These explosions have been traced to the addition products of dienes and oxides of nitrogen, produced from the interaction of nitrogen oxide and oxygen [Bretherick, 1995].

Conditions to avoid

no data available

Incompatible materials

no data available

Hazardous decomposition products

When heated to decomposition it emits acrid smoke and irritating fumes.

SECTION 11: Toxicological information

Acute toxicity

Oral: LD50 Rat oral >5000 mg/kg bw

Inhalation: no data available Dermal: no data available

Skin corrosion/irritation

no data available

Serious eye damage/irritation

no data available

Respiratory or skin sensitization

no data available

Germ cell mutagenicity

no data available

Carcinogenicity

no data available

Reproductive toxicity

no data available

STOT-single exposure

no data available

STOT-repeated exposure

no data available

Aspiration hazard

no data available

SECTION 12: Ecological information

Toxicity

Toxicity to fish: LC50 - Cyprinus carpio - 96 h. Remarks: Average concentration obtained in a WAF prepared at a loading rate of 10 mg/l.

Toxicity to daphnia and other aquatic invertebrates: EC50 - Daphnia magna - 1.47 mg/L - 48 h.

Toxicity to algae: EC50 - Pseudokirchneriella subcapitata (previous names: Raphidocelis subcapitata, Selenastrum capricomutum) - 0.342 mg/L - 72 h.

Toxicity to microorganisms: no data available

Persistence and degradability

AEROBIC: Myrcene has been observed to undergo biodegradation in aerated lagoons, rate constant not specified(1). Myrcene, present at 100 mg/L, reached 82-92% of its theoretical BOD in 2 weeks using an activated sludge inoculum at 30 mg/L and the Japanese MTI test(2) which classifies the compound as readily biodegradable. Monoterpene compounds similar in structure to myrcene (limonene, pinene, terpinene, terpinolene) were readily degraded in aerobic batch experiments using forest soil and enriched cultures(3).

Bioaccumulative potential

An estimated BCF of 334 was calculated in fish for myrcene(SRC), using a log Kow of 4.33(1) and a regression-derived equation(2). According to a classification scheme(3), this BCF suggests the potential for bioconcentration in aquatic organisms is high(SRC), provided the compound is not metabolized by the organism(SRC).

Mobility in soil

Using a structure estimation method based on molecular connectivity indices(1), the Koc of myrcene can be estimated to be 1074(SRC). According to a classification scheme(2), this estimated Koc value suggests that myrcene is expected to have low mobility in soil.

Other adverse effects

no data available

SECTION 13: Disposal considerations

Disposal methods

Product

The material can be disposed of by removal to a licensed chemical destruction plant or by controlled incineration with flue gas scrubbing. Do not contaminate water, foodstuffs, feed or seed by storage or disposal. Do not discharge to sewer systems.

Contaminated packaging

Containers can be triply rinsed (or equivalent) and offered for recycling or reconditioning. Alternatively, the packaging can be punctured to make it unusable for other purposes and then be disposed of in a sanitary landfill. Controlled incineration with flue gas scrubbing is possible for combustible packaging materials.

SECTION 14: Transport information

UN Number

ADR/RID: Not dangerous goods. (For reference only, please check.) IMDG: Not dangerous goods. (For reference only, please check.) IATA: Not dangerous goods. (For reference only, please check.)

UN Proper Shipping Name

ADR/RID: Not dangerous goods. (For reference only, please check.) IMDG: Not dangerous goods. (For reference only, please check.) IATA: Not dangerous goods. (For reference only, please check.)

Transport hazard class(es)

ADR/RID: Not dangerous goods. (For reference only, please check.) IMDG: Not dangerous goods. (For reference only, please check.) IATA: Not dangerous goods. (For reference only, please check.)

Packing group, if applicable

ADR/RID: Not dangerous goods. (For reference only, please check.) IMDG: Not dangerous goods. (For reference only, please check.) IATA: Not dangerous goods. (For reference only, please check.)

Environmental hazards

ADR/RID: No IMDG: No IATA: No

Special precautions for user

no data available

Transport in bulk according to IMO instruments

no data available

SECTION 15: Regulatory information

Safety, health and environmental regulations specific for the product in question

European Inventory of Existing Commercial Chemical Substances (EINECS)

Listed.

EC Inventory

Listed.

United States Toxic Substances Control Act (TSCA) Inventory

Listed.

China Catalog of Hazardous chemicals 2015

Not Listed.

New Zealand Inventory of Chemicals (NZIoC)

Listed.

(PICCS)

Listed.

Vietnam National Chemical Inventory

Listed.

IECSC)

Listed.

Korea Existing Chemicals List (KECL)

Listed.

SECTION 16: Other information

Abbreviations and acronyms

CAS: Chemical Abstracts Service

ADR: European Agreement concerning the International Carriage of Dangerous Goods by Road

RID: Regulation concerning the International Carriage of Dangerous Goods by Rail

IMDG: International Maritime Dangerous Goods

IATA: International Air Transportation Association

TWA: Time Weighted Average

STEL: Short term exposure limit

LC50: Lethal Concentration 50%

LD50: Lethal Dose 50%

EC50: Effective Concentration 50%

References

IPCS - The International Chemical Safety Cards (ICSC), website: http://www.ilo.org/dyn/icsc/showcard.home

HSDB - Hazardous Substances Data Bank, website: https://toxnet.nlm.nih.gov/newtoxnet/hsdb.htm

 ${\sf IARC-International\ Agency\ for\ Research\ on\ Cancer,\ website:\ http://www.iarc.fr/}$

eChemPortal - The Global Portal to Information on Chemical Substances by OECD, website:

 $http://www.echemportal.org/echemportal/index?pageID=0\\ are quest_locale=en$

CAMEO Chemicals, website: http://cameochemicals.noaa.gov/search/simple

ChemIDplus, website: http://chem.sis.nlm.nih.gov/chemidplus/chemidlite.jsp

ERG - Emergency Response Guidebook by U.S. Department of Transportation, website: http://www.phmsa.dot.gov/hazmat/library/erg

Germany GESTIS-database on hazard substance, website: http://www.dguv.de/ifa/gestis-stoffdatenbank/index-2.jsp

ECHA - European Chemicals Agency, website: https://echa.europa.eu/

Disclaimer: The above information is believed to be correct but does not purport to be all inclusive and shall be used only as a guide. The information in this document is based on the present state of our knowledge and is applicable to the product with regard to appropriate safety precautions. It does not represent any guarantee of the properties of the product. We as supplier shall not be held liable for any