Chemical Book India

Chemical Safety Data Sheet MSDS / SDS

2,3,6-TBA SDS

Revision Date: 2024-04-25 Revision Number: 1

Section 2 Section 3 Section 1 Section 4 Section 5 Section 6 Section 7 Section 8 Section 9 Section 10 Section 11 Section 12 Section 13 Section 14 Section 15 Section 16

SECTION 1: Identification of the substance/mixture and of the company/undertaking

Product identifier

Product name: 2,3,6-TBA CAS: 50-31-7

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified For R&D use only. Not for medicinal, household or other use.

uses:

Uses advised none

against:

Company Identification

Company: Chemicalbook.in

Address: 5 vasavi Layout Basaveswara Nilayam Pragathi Nagar Hyderabad, India -500090

Telephone: +91 9550333722

SECTION 2: Hazards identification

Classification of the substance or mixture

Acute toxicity - Category 4, Oral

Hazardous to the aquatic environment, long-term (Chronic) - Category Chronic 2

GHS label elements, including precautionary statements

Pictogram(s)

Signal word Warning

Hazard statement(s)

H302 Harmful if swallowed H411 Toxic to aquatic life with long lasting effects

Precautionary statement(s)

Prevention

P264 Wash ... thoroughly after handling.
P270 Do not eat, drink or smoke when using this product.
P273 Avoid release to the environment.

Response

P301+P317 IF SWALLOWED: Get medical help. P330 Rinse mouth. P391 Collect spillage.

Storage

none

Disposal

P501 Dispose of contents/container to an appropriate treatment and disposal facility in accordance with applicable laws and regulations, and product characteristics at time of disposal.

Other hazards which do not result in classification

no data available

SECTION 3: Composition/information on ingredients

Substance

Chemical name: 2,3,6-TBA Common names and 2,3,6-TBA

synonyms:

CAS number: 50-31-7

EC number: 200-026-4

Concentration: 100%

SECTION 4: First aid measures

Description of necessary first-aid measures

If inhaled

Move the victim into fresh air. If breathing is difficult, give oxygen. If not breathing, give artificial respiration and consult a doctor immediately. Do not use mouth to mouth resuscitation if the victim ingested or inhaled the chemical.

Following skin contact

Take off contaminated clothing immediately. Wash off with soap and plenty of water. Consult a doctor.

Following eye contact

Rinse with pure water for at least 15 minutes. Consult a doctor.

Following ingestion

Rinse mouth with water. Do not induce vomiting. Never give anything by mouth to an unconscious person. Call a doctor or Poison Control Center immediately.

Most important symptoms/effects, acute and delayed

no data available

Indication of immediate medical attention and special treatment needed, if necessary

Immediate first aid: Ensure that adequate decontamination has been carried out. If patient is not breathing, start artificial respiration, preferably with a demand valve resuscitator, bag-valve-mask device, or pocket mask, as trained. Perform CPR if necessary. Immediately flush contaminated eyes with gently flowing water. Do not induce vomiting. If vomiting occurs, lean patient forward or place on the left side (head-down position, if possible) to maintain an open airway and prevent aspiration.

Keep patient quiet and maintain normal body temperature. Obtain medical attention. Poisons A and B

SECTION 5: Firefighting measures

Suitable extinguishing media

Use dry chemical, carbon dioxide or alcohol-resistant foam.

Specific hazards arising from the chemical

no data available

Special protective actions for fire-fighters

Wear self-contained breathing apparatus for firefighting if necessary.

SECTION 6: Accidental release measures

Personal precautions, protective equipment and emergency procedures

Avoid dust formation. Avoid breathing mist, gas or vapours. Avoid contacting with skin and eye. Use personal protective equipment. Wear chemical impermeable gloves. Ensure adequate ventilation. Remove all sources of ignition. Evacuate personnel to safe areas. Keep people away from and upwind of spill/leak.

Environmental precautions

Prevent further spillage or leakage if it is safe to do so. Do not let the chemical enter drains. Discharge into the environment must be avoided.

Methods and materials for containment and cleaning up

Collect and arrange disposal. Keep the chemical in suitable and closed containers for disposal. Remove all sources of ignition. Use spark-proof tools and explosion-proof equipment. Adhered or collected material should be promptly disposed of, in accordance with appropriate laws and regulations.

SECTION 7: Handling and storage

Precautions for safe handling

Handling in a well ventilated place. Wear suitable protective clothing. Avoid contact with skin and eyes. Avoid formation of dust and aerosols. Use non-sparking tools. Prevent fire caused by electrostatic discharge steam.

Conditions for safe storage, including any incompatibilities

Store the container tightly closed in a dry, cool and well-ventilated place. Store apart from foodstuff containers or incompatible materials.

SECTION 8: Exposure controls/personal protection

Control parameters

Occupational Exposure limit values

no data available

Biological limit values

no data available

Appropriate engineering controls

Ensure adequate ventilation. Handle in accordance with good industrial hygiene and safety practice. Set up emergency exits and the risk-elimination area.

Individual protection measures, such as personal protective equipment (PPE)

Eye/face protection

Wear tightly fitting safety goggles with side-shields conforming to EN 166(EU) or NIOSH (US).

Skin protection

Wear fire/flame resistant and impervious clothing. Handle with gloves. Gloves must be inspected prior to use. Wash and dry hands. The selected protective gloves have to satisfy the specifications of EU Directive 89/686/EEC and the standard EN 374 derived from it.

Respiratory protection

If the exposure limits are exceeded, irritation or other symptoms are experienced, use a full-face respirator.

Thermal hazards

SECTION 9: Physical and chemical properties and safety characteristics

Physical state: no data available

Colour: no data available

Odour: no data available

Melting point/freezing

point:

324.5°C at 760mmHg

no data available

126-127°C(lit.)

Boiling point or initial boiling point and boiling range:

Flammability: no data available

Lower and upper no data available

Lower and upper explosion

explosion

limit/flammability

limit:

Flash point: 150.1°C

Auto-ignition

temperature:

Decomposition no data available

temperature:

pH: no data available

Kinematic no data available

viscosity:

Solubility: Soluble in ethyl ether

Partition log Kow = 2.71 (est)

coefficient noctanol/water:

Vapour pressure: 5.5X10-4 mm Hg at 25 deg C

Density and/or

1.635g/cm3

relative density:

Relative vapour

no data available

density:

Particle no data available

characteristics:

SECTION 10: Stability and reactivity

Reactivity

no data available

Chemical stability

no data available

Possibility of hazardous reactions

no data available

Conditions to avoid

no data available

Incompatible materials

no data available

Hazardous decomposition products

When heated to decomposition it emits toxic /hydrogen/ chloride fumes.

SECTION 11: Toxicological information

Acute toxicity

Oral: LD50 Rat oral 1500 mg/kg

Inhalation: no data available Dermal: no data available

Skin corrosion/irritation

no data available

Serious eye damage/irritation

no data available

Respiratory or skin sensitization

no data available

Germ cell mutagenicity

no data available

Carcinogenicity

no data available

Reproductive toxicity

no data available

STOT-single exposure

no data available

STOT-repeated exposure

no data available

Aspiration hazard

no data available

SECTION 12: Ecological information

Toxicity

Toxicity to fish: LC50; Species: Lepomis macrochirus (Bluegill, fingerling, length 3-5 in); Conditions: freshwater, static, 25 deg C, pH 6.7 (6.3-7.3), hardness 77.1 mg/L CaCO3 (17.0-176.0 mg/L CaCO3), dissolved oxygen 4.6 mg/L (1.3-7.8 mg/L); Concentration: 1,750,000 ug/L for 24 hr

Toxicity to daphnia and other aquatic invertebrates: no data available

Toxicity to algae: no data available

Toxicity to microorganisms: no data available

Persistence and degradability

AEROBIC: The percent losses of herbicidal effectiveness of 0.1-32 ppm of 2,3,6,-trichloroberzoic acid in an aerobic grab sample test with 4 different soils were 15.9%, 3.2%, 6.2%, and 9.0% after 120 days in incubation in Staten Island peaty muck, Stockton adobe clay, Yolo fine sandy loam and Hesperia sandy loam, respectively(1). Leaching of the 2,3,6-trichloroberzoic acid was ruled out as a mechanism of effectiveness reduction(1). Incubation for 80 days of test concentrations of 100 ppm using a soil perfusion system with Celeryville muck with high microbial activity resulted in only 2% degradation (as measured by chloride ion acclimation in the perfusate)(2). 2,3,6-Trichloroberzoic acid, present at 100 mg/L, reached 0% of its theoretical BOD in 4 weeks using an activated sludge inoculum at 30 mg/L in the Japanese MITI test(3). No degradation of 100 ppm 2,3,6,-trichloroberzoic acid was observed in 36 days incubation in aqueous laboratory aerobic sewage die-away screening tests using raw sewage inoculum(4). Addition of glucose or benzoate and m-chlorobenzoate to the sewage did not promote degradation of the 2,3,6-trichloroberzoic acid(4).

Bioaccumulative potential

The BCF of 2,3,6-trichlorobenzoic acid was <0.4 at a concentration of 293 ppb and <3.5 at a concentration of 29.3 ppb using carp (Cypinus carpio) which were exposed over a 6-week period(1). According to a classification scheme(2), these BCF values suggest bioconcentration in aquatic organisms is low(SRC).

Mobility in soil

Using a structure estimation method based on molecular connectivity indices(1), the Koc of 2,3,6-trichloroberzoic acid can be estimated to be 65(SRC). According to a classification scheme(2), this estimated Koc value suggests that 2,3,6-trichloroberzoic acid is expected to have high mobility in soil(SRC). The estimated pKa of 2,3,6-trichloroberzoic acid is 1.8(3), indicating that this compound will exist almost entirely in anion form in the environment and anions generally do not adsorb more strongly to soils containing organic carbon and clay than their neutral counterparts(4). 2,3,6-Trichloroberzoic acid readily leaches through soil; 2,3,6-trichloroberzoic acid has been found at depths of 11 feet following surface application(5). Approximately 10% of the 2,3,6-trichloroberzoic acid applied at rates of 0.2 and 0.6 kg/hectare to 8 experimental plots leached an unspecified distance to the

tile-drain groundwater in 3 months(6). 2,3,6-Trichlorobenzoic acid was found to be readily leached from soil columns containing 4 different types of soil (Staten Island peaty muck, Stockton adobe clay, Yolo fine sandy loam and Hesperia sandy loam)(7). In a soil column filled with silty clay loam, 2,3,6-trichlorobenzoic acid was leached 20 inches upon the addition of sufficient water to wet the column to 22 inches(8). Most of the residual herbicidal activity of 2,3,6-trichlorobenzoic acid applied to a test field at a rate of 15-30 lb/acre was present in the second, third and fourth foot depth of the 6 foot of depth tested(9).

Other adverse effects

no data available

SECTION 13: Disposal considerations

Disposal methods

Product

The material can be disposed of by removal to a licensed chemical destruction plant or by controlled incineration with flue gas scrubbing. Do not contaminate water, foodstuffs, feed or seed by storage or disposal. Do not discharge to sewer systems.

Contaminated packaging

Containers can be triply rinsed (or equivalent) and offered for recycling or reconditioning. Alternatively, the packaging can be punctured to make it unusable for other purposes and then be disposed of in a sanitary landfill. Controlled incineration with flue gas scrubbing is possible for combustible packaging materials.

SECTION 14: Transport information

UN Number

ADR/RID: Not dangerous goods. (For reference only, please check.) IMDG: Not dangerous goods. (For reference only, please check.) IATA: Not dangerous goods. (For reference only, please check.)

UN Proper Shipping Name

ADR/RID: Not dangerous goods. (For reference only, please check.) IMDG: Not dangerous goods. (For reference only, please check.) IATA: Not dangerous goods. (For reference only, please check.)

Transport hazard class(es)

ADR/RID: Not dangerous goods. (For reference only, please check.) IMDG: Not dangerous goods. (For reference only, please check.) IATA: Not dangerous goods. (For reference only, please check.)

Packing group, if applicable

ADR/RID: Not dangerous goods. (For reference only, please check.) IMDG: Not dangerous goods. (For reference only, please check.) IATA: Not dangerous goods. (For reference only, please check.)

Environmental hazards

ADR/RID: Yes IMDG: Yes IATA: Yes

Special precautions for user

no data available

Transport in bulk according to IMO instruments

no data available

SECTION 15: Regulatory information

Safety, health and environmental regulations specific for the product in question

European Inventory of Existing Commercial Chemical Substances (EINECS)

Listed.

EC Inventory

Listed.

United States Toxic Substances Control Act (TSCA) Inventory

Not Listed.

China Catalog of Hazardous chemicals 2015

Not Listed.

New Zealand Inventory of Chemicals (NZIoC)

Not Listed.

(PICCS)

Not Listed.

Vietnam National Chemical Inventory

Listed.

IECSC)

Not Listed.

Korea Existing Chemicals List (KECL)

Not Listed.

SECTION 16: Other information

Abbreviations and acronyms

CAS: Chemical Abstracts Service

ADR: European Agreement concerning the International Carriage of Dangerous Goods by Road

RID: Regulation concerning the International Carriage of Dangerous Goods by Rail

IMDG: International Maritime Dangerous Goods

IATA: International Air Transportation Association

TWA: Time Weighted Average

STEL: Short term exposure limit

LC50: Lethal Concentration 50%

LD50: Lethal Dose 50%

EC50: Effective Concentration 50%

References

IPCS - The International Chemical Safety Cards (ICSC), website: http://www.ilo.org/dyn/icsc/showcard.home

HSDB - Hazardous Substances Data Bank, website: https://toxnet.nlm.nih.gov/newtoxnet/hsdb.htm

IARC - International Agency for Research on Cancer, website: http://www.iarc.fr/

eChemPortal - The Global Portal to Information on Chemical Substances by OECD, website:

http://www.echemportal.org/echemportal/index?pageID=0&request_locale=en

CAMEO Chemicals, website: http://cameochemicals.noaa.gov/search/simple

ChemIDplus, website: http://chem.sis.nlm.nih.gov/chemidplus/chemidlite.jsp

ERG - Emergency Response Guidebook by U.S. Department of Transportation, website:

http://www.phmsa.dot.gov/hazmat/library/erg

Germany GESTIS-database on hazard substance, website: http://www.dguv.de/ifa/gestis/gestis-stoffdatenbank/index-2.jsp

ECHA - European Chemicals Agency, website: https://echa.europa.eu/

Disclaimer: The above information is believed to be correct but does not purport to be all inclusive and shall be used only as a guide. The information in this document is based on the present state of our knowledge and is applicable to the product with regard to appropriate safety precautions. It does not represent any guarantee of the properties of the product. We as supplier shall not be held liable for any